Skip to main content

Advertisement

Log in

Long-term study of aerosol–cloud–precipitation interaction over the eastern part of India using satellite observations during pre-monsoon season

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study attempts to analyze possible aerosol–cloud–precipitation interaction over the eastern part of India including Bhubaneswar city and the whole Odisha region primarily using a long-term satellite-based dataset from 2000 to 2016 during pre-monsoon period. Relationship between aerosol optical depth (AOD), rainfall, and cloud properties is examined by taking convectively driven rain events. The two-sample student’s t test is used to compute “p” value of datasets that are statically significant. Role of aerosols in governing cloud properties is analyzed through the variation of COD (cloud optical depth) and CER (cloud effective radius) in the AOD ranges 0.2–0.8. A relatively stronger and affirmative AOD–CER relationship is observed over Bhubaneswar city compared to Odisha region though the aerosols still play an appreciable role for the later too. The AOD–COD relationship is weak over both the regions. For Odisha, relationships between aerosol and cloud parameters are insignificant irrespective of rainfall regimes. Fostering of heavy rainfall over these regions takes place due to invigoration and microphysical effect during pre-monsoon months, depending upon meteorological conditions. Liquid water content and presence of a mixed-phase zone, both seem to be quite important in the convectively driven precipitation over Odisha region including Bhubaneswar city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ackerman AS (2000) Reduction of tropical cloudiness by soot. Science 288:1042–1047

    Article  Google Scholar 

  • Adesina AJ, Kumar KR, Sivakumar V (2016) Aerosol-cloud-precipitation interactions over major cities in South Africa: impact on regional environment and climate change. Aerosol Air Qual Res 2016:195–211

  • Alam K, Khan R, Blaschke T, Mukhtiar A (2014) Variability of aerosol optical depth and their impact on cloud properties in Pakistan. J Atmos Sol-Terr Phys 107:104–112

    Article  Google Scholar 

  • Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230

    Article  Google Scholar 

  • Anderson TL, Charlson RJ, Winker DM, Ogren JA, Holmén K (2003) Mesoscale variations of tropospheric aerosols. J Atmos Sci 60(1):119–136

    Article  Google Scholar 

  • Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva-Dias MA (2004) Smoking rain clouds over the Amazon. Science 303:1337–1342

    Article  Google Scholar 

  • Arya PS (2001) Introduction to micrometeorology. Second edition, academic press, international geophysics series Vol. 79: 447pp

  • Bergin MS, West JJ, Keating TJ, Russell AG (2005) Regional atmospheric pollution and transboundary air quality management. Annu Rev Environ Resour 30:1–37

    Article  Google Scholar 

  • Bhawar RL, Devara PCS (2010) Study of successive contrasting monsoons (2001–2002) in terms of aerosol variability over a tropical station Pune, India. Atmos Chem Phys 10:29–37

    Article  Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden-Day, Merrifield, Va 575

  • Chaudhuri S, Pal J (2014) Cloud–aerosol coupled index in estimating the break phase of Indian summer monsoon. Theor Appl Climatol 118:447–464

    Article  Google Scholar 

  • Cheng F, Zhang J, He J, Zha Y, Li Q, Li Y (2017) Analysis of aerosol-cloud-precipitation interactions based on MODIS data. Adv Space Res 59:63–73

    Article  Google Scholar 

  • Das N, Baral SS, Sahoo SK, Mohapatra RK, Ramulu TS, Das SN, Chaudhury GR (2009) Aerosol physical characteristics at Bhubaneswar, east coast of India. Atmos Res 93:897–901

    Article  Google Scholar 

  • Das S, Dey S, Dash SK (2016) Direct radiative effects of anthropogenic aerosols on Indian summer monsoon circulation. Theor Appl Climatol 24:629–639

    Article  Google Scholar 

  • Devasthale A, Krüger O, Grassl H (2005) Change in cloud-top temperatures over Europe. IEEE Geosci Remote Sens Lett 2:333–336

    Article  Google Scholar 

  • Fan J, Yuan T, Comstock JM, Ghan S, Khain A, Leung LR, Li Z, Martins VJ, Ovchinnikov M (2009) Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J Geophys Res Atmos 114:1–9

    Google Scholar 

  • Fan J, Wang Y, Rosenfeld D, Liu X (2016) Review of aerosol–cloud interactions: mechanisms, significance, and challenges. J Atmos Sci 73(11):4221–4252

    Article  Google Scholar 

  • Feingold G, Eberhard WL, Veron DE, Previdi M (2003) First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys Res Lett 30(6):1–4

    Article  Google Scholar 

  • Gautam R, Liu Z, Singh RP, Hsu NC (2009) Two contrasting dust-dominant periods over India observed from MODIS and CALIPSO data. Geophys Res Lett 36 (L06813). https://doi.org/10.1029/2008GL036967

  • Gautam R, Hsu NC, Lau K-M (2010) Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: implications for regional climate warming. J Geophys Res 115(D17208), 15pp). https://doi.org/10.1029/2010JD013819

  • Gautam R, Hsu NC, Tsay SC, Lau KM, Holben B, Bell S, Smirnov A, Li C, Hansell R, Ji Q, Payra S (2011) Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season. Atmos Chem Phys 11:12841–12863

    Article  Google Scholar 

  • Gryspeerdt E, Stier P, Partridge DG (2014) Links between satellite-retrieved aerosol and precipitation. Atmos Chem Phys 14:9677–9694

    Article  Google Scholar 

  • Gryspeerdt E, Stier P, White BA, Kipling Z (2015) Wet scavenging limits the detection of aerosol effects on precipitation. Atmos Chem Phys 15:7557–7570

    Article  Google Scholar 

  • Gunn R, Phillips BB (1957) An experimental investigation of the effect of air pollution on the initiation of rain. J Meteorol 14:272–280

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864

    Article  Google Scholar 

  • Iguchi T, Meneghini R, Awaka J, Kozu T, Okamoto K (2000) Rain profiling algorithm for TRMM precipitation radar data. Adv Space Res 25:973–976

    Article  Google Scholar 

  • Isaksen IS, Granier C, Myhre G, Berntsen TK, Dalsøren SB, Gauss M, Klimont Z, Benestad R, Bousquet P, Collins W, Cox T (2009) Atmospheric composition change: climate–chemistry interactions. Atmos Environ 43:5138–5192

    Article  Google Scholar 

  • Jin M (2006) MODIS observed seasonal and interannual variations of atmospheric conditions associated with hydrological cycle over Tibetan plateau. Geophys Res Lett 33:2–6

    Google Scholar 

  • Jin M, Shepherd JM (2008) Aerosol relationships to warm season clouds and rainfall at monthly scales over East China: urban land versus ocean. J Geophys Res Atmos 113:1–12

    Article  Google Scholar 

  • Jones TA, Christopher SA, Quaas J (2009) A six year satellite-based assessment of the regional variations in aerosol indirect effects. Atmos Chem Phys 9:4091–4114

    Article  Google Scholar 

  • Kang N, Kumar KR, Yin Y, Diao Y, Yu X (2015) Correlation analysis between AOD and cloud parameters to study their relationship over China using MODIS data (2003–2013): impact on cloud formation and climate change. Aerosol Air Qual Res 15:958–973

    Article  Google Scholar 

  • Kant S, Panda J, Gautam R, Wang PK, Singh SP (2017) Significance of aerosols influencing weather and climate over Indian region. Int J Earth Atmos Sci 4:1–20

    Google Scholar 

  • Kaufman YJ, Fraser RS (1997) The effect of smoke particles on clouds and climate forcing. Science 277:1636–1639

    Article  Google Scholar 

  • Kaufman YJ, Nakajima T (1993) Effect of Amazon smoke on cloud microphysics and albedo - analysis from satellite imagery. J Appl Meteorol 32:729–744

    Article  Google Scholar 

  • Kaufman YJ, Tanré D, Remer LA, Vermote EF, Chu A, Holben BN (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res 102:17051–17067

    Article  Google Scholar 

  • Khain AP (2009) Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review. Environ Res Lett 4:1–20

    Article  Google Scholar 

  • King MD, Tsay SC, Platnick SE, Wang M, Liou KN (1997) Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase. MODIS Algorithm Theoretical Basis Document. No. ATBD-MOD-05, 83pp

  • Koren I, Kaufman YJ, Remer LA, Martins JV (2004) Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science 303:1342–1345

    Article  Google Scholar 

  • Koren I, Kaufman YJ, Rosenfeld D, Remer LA, Rudich Y (2005) Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys Res Lett 32:L14828. https://doi.org/10.1029/2005GL023187

    Article  Google Scholar 

  • Koren I, Martins JV, Remer LA, Afargan H (2008) Smoke invigoration versus inhibition of clouds over the Amazon. Science 321:1–5

    Article  Google Scholar 

  • Koren I, Feingold G, Remer LA (2010) The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact? Atmos Chem Phys 10:8855–8872

    Article  Google Scholar 

  • Koren I, Altaratz O, Remer LA, Feingold G, Martins JV, Heiblum RH (2012) Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nat Geosci 5:118–122

    Article  Google Scholar 

  • Kummerow C, Simpson J, Thiele O, Barnes W, Chang AT, Stocker E, Adler RF, Hou A, Kakar R, Wentz F, Ashcroft P (2000) The status of the tropical rainfall measuring mission (TRMM) after two years in orbit. J Appl Meteorol 39:1965–1982

    Article  Google Scholar 

  • Lau KM, Kim KM (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:1–5

    Article  Google Scholar 

  • Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan plateau. Clim Dyn 26:855–864

    Article  Google Scholar 

  • Li Z, Niu F, Fan J, Liu Y, Rosenfeld D, Ding Y (2011) Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat Geosci 4:888–894

    Article  Google Scholar 

  • Li Z, Lau WK-M, Ramanathan V, Wu G, Ding Y, Manoj MG, Liu J, Qian Y, Li J, Zhou T, Fan J, Rosenfeld D, Ming Y, Wang Y, Huang J, Wang B, Xu X, Lee S-S, Cribb M, Zhang F, Yang X, Zhao C, Takemura T, Wang K, Xia X, Yin Y, Zhang H, Guo J, Zhai PM, Sugimoto N, Babu SS, Brasseur GP (2016) Aerosol and monsoon climate interactions over Asia. Rev Geophys 54(4):866–929

    Article  Google Scholar 

  • Lin JC, Matsui T, Pielke SA, Kummerow C (2006) Effects of biomass-burning-derived aerosols on precipitations and clouds in the Amazon Basin: a satellite-based empirical study. J Geophys Res Atmos 111:1–14

    Google Scholar 

  • Liu Y, de Leeuw G, Kerminen V-M, Zhang J, Zhou P, Nie W, Qi X, Hong J, Wang Y, Ding A, Guo H, Krüger O, Kulmala M, Petäjä T (2017) Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations. Atmos Chem Phys 17(9):5623–5641

    Article  Google Scholar 

  • Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737

    Article  Google Scholar 

  • Manoj MG, Devara PCS, Safai PD, Goswami BN (2011) Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells. Clim Dyn 37:2181–2198

    Article  Google Scholar 

  • Manoj MG, Devara PCS, Joseph S, Sahai AK (2012) Aerosol indirect effect during the aberrant Indian summer monsoon breaks of 2009. Atmos Environ 60:153–163

    Article  Google Scholar 

  • Meskhidze N, Remer LA, Platnick S, Negrón Juárez R, Lichtenberger AM, Aiyyer AR (2009) Exploring the differences in cloud properties observed by the Terra and Aqua MODIS sensors. Atmos Chem Phys 9:3461–3475

    Article  Google Scholar 

  • Minnis P, Ayers JK, Palikonda R, Phan D (2004) Contrails, cirrus trends, and climate. J Clim 17:1671–1685

    Article  Google Scholar 

  • Mohapatra GN, Panda US, Mohanty PK (2007) Annual cycle of surface meteorological and solar energy parameters over Orissa. Ind J Radio Space Phys 36:128–144

    Google Scholar 

  • Murray BJ, O’Sullivan D, Atkinson JD, Webb ME (2012) Ice nucleation by particles immersed in supercooled cloud droplets. Chem Soc Rev 41:6519–6554

    Article  Google Scholar 

  • Nair VS, Moorthy KK, Alappattu DP, Kunhikrishnan PK, George S, Nair PR, Babu SS, Abish B, Satheesh SK, Tripathi SN, Niranjan K (2007) Wintertime aerosol characteristics over the Indo-Gangetic plain (IGP): impacts of local boundary layer processes and long-range transport. J Geophys Res Atmos 112:1–15

    Google Scholar 

  • Niu F, Li Z (2011) Cloud invigoration and suppression by aerosols over the tropical region based on satellite observations. Atmos Chem Phys Discuss 11:5003–5017

    Article  Google Scholar 

  • Niu F, Li Z (2012) Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos Chem Phys 12(18):8491–8498

    Article  Google Scholar 

  • Panda J, Sharan M (2012) Influence of land-surface and turbulent parameterization schemes on regional-scale boundary layer characteristics over northern India. Atmos Res 112:89–111

    Article  Google Scholar 

  • Panda J, Sharan M, Gopalakrishnan SG (2009) Study of regional-scale boundary layer characteristics over northern India with a special reference to the role of the Thar Desert in regional-scale transport. J Appl Meteorol Climatol 48(11):2377–2402

    Article  Google Scholar 

  • Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riédi JC, Frey RA (2003) The MODIS cloud products: algorithms and examples from terra. IEEE Trans Geosci Remote Sens 41:459–472

    Article  Google Scholar 

  • Quaas J, Ming Y, Menon S, Takemura T, Wang M, Penner JE, Gettelman A, Lohmann U, Bellouin N, Boucher O, Sayer AM (2009) Aerosol indirect effects–general circulation model intercomparison and evaluation with satellite data. Atmos Chem Phys 9:8697–8717

    Article  Google Scholar 

  • Quaas J, Stevens B, Stier P, Lohmann U (2010) Interpreting the cloud cover–aerosol optical depth relationship found in satellite data using a general circulation model. Atmos Chem Phys 10(13):6129–6135

    Article  Google Scholar 

  • Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Li RR, Ichoku C, Levy RC, Kleidman RG, Eck TF (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973

    Article  Google Scholar 

  • Remer LA, Kleidman RG, Levy RC, Kaufman YJ, Tanré D, Mattoo S, Martins JV, Ichoku C, Koren I, Yu H, Holben BN (2008) Global aerosol climatology from the MODIS satellite sensors. J Geophys Res Atmos 113(D14S07):5. https://doi.org/10.1029/2007JD009661

    Article  Google Scholar 

  • Rosenfeld D (1999) TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys Res Lett 26:3105–3108

    Article  Google Scholar 

  • Rosenfeld D, Gutman G (1994) Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. Atmos Res 34:259–283

    Article  Google Scholar 

  • Rosenfeld D, Lensky IM (1998) Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull Am Meteorol Soc 79:2457–2476

    Article  Google Scholar 

  • Rosenfeld D, Woodley W (2000) Deep convective clouds with sustained supercooled liquid water down to −37.5 degrees C. Nature 405:440–442

    Article  Google Scholar 

  • Rosenfeld D, Rudich Y, Lahav R (2001) Desert dust suppressing precipitation: a possible desertification feedback loop. Proc Natl Acad Sci U S A 98:5975–5980

    Article  Google Scholar 

  • Rosenfeld D, Woodley W, Lerner A, Kelman G, Lindsey D (2008) Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J Geophys Res 113:D04208

    Google Scholar 

  • Sarangi C, Tripathi SN, Kanawade VP, Koren I, Pai DS (2017) Investigation of the aerosol–cloud–rainfall association over the Indian summer monsoon region. Atmos Chem Phys 17:5185–5204

    Article  Google Scholar 

  • Sayer AM, Hsu NC, Bettenhausen C, Lee J, Redemann J, Schmid B, Shinozuka Y (2016) Extending “deep blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: sensitivity analysis and first case studies. J Geophys Res Atmos 121:4830–4854

    Article  Google Scholar 

  • Singh RP, Dey S, Tripathi SN, Tare V, Holben B (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res Atmos 109:1–14

    Google Scholar 

  • Squires P (1958) The microstructure and colloidal stability of warm clouds. Tellus 10:262–271

    Google Scholar 

  • Squires P, Twomey S (1966) A comparison of cloud nucleus measurements over Central North America and the Caribbean Sea. J Atmos Sci 23:401–404

    Article  Google Scholar 

  • Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607–613

    Article  Google Scholar 

  • Storelvmo T, Kristjánsson JE, Ghan SJ, Kirkevåg A, Seland Ø, Iversen T (2006) Predicting cloud droplet number concentration in community atmosphere model (CAM)-Oslo. J Geophys Res Atmos 111(D24208), 14pp). https://doi.org/10.1029/2005JD006300

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers Netherlands, 670pp

  • Ten Hoeve JE, Remer LA, Jacobson MZ (2011) Microphysical and radiative effects of aerosols on warm clouds during the Amazon biomass burning season as observed by MODIS: impacts of water vapor and land cover. Atmos Chem Phys 11:3021–3036

    Article  Google Scholar 

  • Tripathi SN, Dey S, Chandel A, Srivastava S, Singh RP, Holben BN (2005) Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Ann Geophys 23:1093–1101

    Article  Google Scholar 

  • Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152

    Article  Google Scholar 

  • Twomey SA, Piepgrass M, Wolfe TL (1984) An assessment of the impact of pollution on global cloud albedo. Tellus Ser B Chem Phys Meteorol 36(5):356–366

    Article  Google Scholar 

  • Verma S, Priyadharshini B, Pani SK, Kumar DB, Faruqi AR, Bhanja SN, Mandal M (2016) Aerosol extinction properties over coastalWest Bengal Gangetic plain under inter-seasonal and sea breeze influenced transport processes. Atmos Res 167:224–236

    Article  Google Scholar 

  • Vinoj V, Rasch PJ, Wang H, Yoon JH, Ma PL, Landu K, Singh B (2014) Short-term modulation of Indian summer monsoon rainfall by west Asian dust. Nat Geosci 7:308–313

    Article  Google Scholar 

  • Warner J (1968) A reduction in rainfall associated with smoke from sugar-cane fires—an inadvertent weather modification? J Appl Meteorol 7:247–251

    Article  Google Scholar 

  • Warner J, Twomey S (1967) The production of cloud nuclei by cane fires and the effect on cloud droplet concentration. J Atmos Sci 24:704–706

    Article  Google Scholar 

  • Yuan T, Li Z, Zhang R, Fan J (2008) Increase of cloud droplet size with aerosol optical depth: an observation and modeling study. J Geophys Res Atmos 113(D4):27

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the data support from Giovanni (http://giovanni.sci.gsfc.nasa.gov/giovanni/), ERA-Interim portal (http://apps.ecmwf.int/datasets), and Wyoming Weather Web (http://weather.uwyo.edu/upperair). Special thanks go to my lab mates Mr. Sudhansu Sekhar Rath, Mr. Bijay Kumar Guha and Ms. Kasturi Singh for their technical help during my work. The authors also express their thankfulness to the anonymous reviewers for their valuable comments and suggestions, which helped in the overall improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagabandhu Panda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kant, S., Panda, J., Pani, S.K. et al. Long-term study of aerosol–cloud–precipitation interaction over the eastern part of India using satellite observations during pre-monsoon season. Theor Appl Climatol 136, 605–626 (2019). https://doi.org/10.1007/s00704-018-2509-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-018-2509-2

Navigation