Skip to main content

Advertisement

Log in

Cloud–aerosol coupled index in estimating the break phase of Indian summer monsoon

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The Indian summer monsoon (ISM) is largely influenced by intra-seasonal variability like break and active phases of monsoon. In the present study, different cloud and aerosol parameters are considered and analyzed to formulate a cloud–aerosol coupled index (CACI) that can aid in forecasting the break phase of ISM. The method of principal component analysis is implemented to identify the significant cloud and aerosol parameters during break and active phases of ISM. The threshold ranges of each parameter are evaluated by using the normal probability density function. The result reveals that for break phase, the significant parameters are cloud water path (CWP), cloud optical depth, aerosol index, zonal wind (ZW), and meridional wind (MW) at 850 hPa pressure level whereas for active phase, the parameters found to be important are aerosol optical depth, CWP, ZW, and MW at 850 hPa pressure level. The significantly correlated (p < 0.05) parameters are taken for formulating CACI. The results show that no such significant correlation is possible with the parameters during active phase of ISM. The CACI is thus formulated to forecast the break phase of ISM. The result shows that the CACI is capable of forecasting the break phase of Indian summer monsoon over central India with 88 % certainty and 10 days lead time. The result is validated with the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ackerman AS, Toon OB, Stevens DE, Heymsfield AJ, Ramanathan V, Welton EJ (2000) Reduction of tropical cloudiness by soot. Science 288:1042–1047

    Article  Google Scholar 

  • Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230

    Article  Google Scholar 

  • Breon FM, Tanr D, Generoso S (2002) Effect of aerosols on cloud droplet size monitored from satellite. Science 295:834–838. doi:10.1126/science.1066434

    Article  Google Scholar 

  • Cattell RB (1966) The scree test for the number of factors. Multivar Behav Res 1:245–276

    Article  Google Scholar 

  • Charlson RJ, Heintzenberg J (1995) Aerosol forcing of climate. Wiley, New York, p 416

    Google Scholar 

  • Chatterjee S, Ghosh S, De SK (2009) Reduction of number of parameters and forecasting convective developments at Kolkata (22.35 N, 88.33E), India during pre-monsoon season: an application of multivariate technique. Indian J Radio Space Phys 38:275–282

    Google Scholar 

  • Chaudhuri S (2008) Preferred type of cloud in the genesis of severe thunderstorms—a soft computing approach. Atmos Res 88:149–156

    Article  Google Scholar 

  • Chaudhuri S, Middey A, Goswami S, Banerjee S (2012) Appraisal of the prevalence of severe tropical storms over Indian Ocean by screening the features of tropical depressions. Nat Hazards 61:745–756

    Article  Google Scholar 

  • Chaudhuri S, Goswami S, Debanjana D, Middey A (2013) Meta-heuristic ant colony optimization technique to forecast the amount of summer monsoon rainfall: skill comparison with Markov chain model. Theor Appl Climatol. doi:10.1007/s00704-013-0977-y

  • Chou C, Neelin JD, Lohmann U, Feichter J (2005) Local and remote impacts of aerosol climate forcing on tropical precipitation. J Clim 18:4621–4636

    Article  Google Scholar 

  • Costantino L, Breon FM (2010) Analysis of aerosol–cloud inter-action from multi-sensor satellite observations. Geophys Res Lett. doi:10.1029/2009GL041828

    Google Scholar 

  • Devara PCS, Raj PE, Pandithurai G, Dani KK, Maheskumar RS (2003) Relationship between lidar-based observations of aerosol content and monsoon precipitation over a tropical station, Pune, India. Meteorol Appl 10:253–262

    Article  Google Scholar 

  • Feingold G, Eberhard WL, Veron DE, Previdi M (2003) First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys Res Lett 30:1287. doi:10.1029/2002GL016633

    Article  Google Scholar 

  • Fu X, Wang B, Waliser DE, Tao L (2007) Impact of atmosphere–ocean coupling on the predictability of monsoon intraseasonal oscillations. J Atmos Sci 64:157–174

    Article  Google Scholar 

  • Goswami BN, Xavier PK (2003) Potential predictability and extended range prediction of Indian summer monsoon breaks. Geophys Res Lett 30(18):1966. doi:10.1029/2003GL017810

    Article  Google Scholar 

  • Goswami BN, Wu G, Yasunari T (2006) The annual cycle, intraseasonal oscillations, and roadblock to seasonal predictability of the Asian summer monsoon. J Clim Spec Sect 19:5078–5099

    Article  Google Scholar 

  • Goswami BN, Wheeler MC, Gottschalck JC, Waliser DE (2011) Intra-seasonal variability and forecasting: a review of recent research. The global monsoon system: research and forecast, 2nd edition. World Sci Publ Co Collab WMO 5:389–407

    Google Scholar 

  • Grossman DN, David MN, Mary CF (1991) Principal component analysis of assemblage structure data: utility of tests based on eigenvalues. Ecology 72:341–347

    Google Scholar 

  • Gruber A, Kruger AF (1984) The status of the NOAA outgoing longwave radiation dataset. Bull Am Meteorol Soc 65:958–962

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864

    Article  Google Scholar 

  • Hazra A, Goswami BN, Chen JP (2013) Role of interactions between aerosol radiative effect, dynamics, and cloud microphysics on transitions of monsoon intraseasonal oscillations. J Atmos Sci 70:2073–2087

    Article  Google Scholar 

  • Hsu NC, Herman JR, Gleason JF, Torres O, Seftor CJ (1999) Satellite detection of smoke aerosols over a snow/ice surface by TOMS. Geophys Res Lett 26:1165–1168. doi:10.1029/1999GL900155

    Article  Google Scholar 

  • Joseph S, Sahai AK, Goswami BN (2009) Eastward propagating MJO during boreal summer and Indian monsoon droughts. Clim Dyn 32:1139–1153. doi:10.1007/s00382-008-0412-8

    Article  Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Krishnan R, Zhang C, Sugi M (2000) Dynamics of breaks in Indian summer monsoon. J Atmos Sci 57:1354–1372

    Article  Google Scholar 

  • Levelt PF, Gijsbertus HJ, Dobber MR, Mälkki A, Visser H, De Vries J, Stammes P, Lundell JOV, Saari H (2006) The Ozone Monitoring Instrument. IEEE Trans Geosci Remote Sens 44:1093–1101

    Article  Google Scholar 

  • Liu Z, Ostrenga D, Teng W, Kempler S (2012) Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-11-00152.1

    Google Scholar 

  • Manoj MG, Devara PCS, Safai PD, Goswami BN (2011) Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells. Clim Dyn 37:2181–2198

    Article  Google Scholar 

  • Manoj MG, Devera PCS, Joseph S, Saha AK (2012) Aerosol indirect effect during the aberrant Indian Summer Monsoon breaks of 2009. Atmos Environ 60:153–163

    Google Scholar 

  • Nakajima T, Higurashi A, Kawamoto K, Penner JE (2001) A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys Res Lett 28:1171–1174. doi:10.1029/2000GL012186

    Article  Google Scholar 

  • Niyogi D, Chang HI, Chen F, Gu L, Kumar A, Menan S, Roger A, Pielke S (2007) Potential impacts of aerosol–land–atmosphere interactions on the Indian monsoonal rainfall characteristics. Nat Hazards 42:345–359

    Article  Google Scholar 

  • Pawlak Z (1991) Rough sets—theoretical aspects of reasoning about data. Kluwer Academic, London

    Google Scholar 

  • Pawlak Z, Skowron A (2007) Rudiments of rough sets. Inf Sci 177:3–27

    Article  Google Scholar 

  • Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riedi JC, Frey RA (2003) The MODIS cloud products: algorithms and examples from terra. IEEE T Geosci Remote 41:459–473

    Article  Google Scholar 

  • Ramanathan V, Ramana MV (2005) Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic Plains. Pure Appl Geophys 162:1609–1626. doi:10.1007/s00024-005-2685-8

    Article  Google Scholar 

  • Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud radiative forcing and climate change: results from the Earth Radiation Budget Experiment. Science 243:57–63

    Article  Google Scholar 

  • Shan S (2001) Classification of weather data: a rough set approach. M.Sc. thesis, University of Manitoba

  • Taraphdar S, Mukhopadhyay P, Goswami BN (2010) Predictability of Indian summer monsoon weather during active and break phases using a high resolution regional model. Geophys Res Lett. doi:10.1029/2010GL044969

    Google Scholar 

  • Tripathi SN, Tare V, Chinnam N, Srivastava AK, Dey S, Agarwal A, Kishore S, Lal RB, Manar M, Kanawade VP, Chauhan SSS, Sharma M, Reddy RR, Gopal KR, Narasimhulu K, Reddy LSS, Gupta S, Lal S (2006) Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Program Land Campaign II at a typical location in the Ganga Basin: 1. Physical and optical properties. J Geophys Res 111, D23209

  • Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152

    Article  Google Scholar 

  • Waliser DE, Stern W, Schubert S, Lau KM (2003) Dynamic predictability of intraseasonal variability associated with the Asian summer monsoon. Q J R Meteorol Soc 129:2897–2925

    Article  Google Scholar 

  • Webster PJ, Magafia VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability and prospects for prediction. J Geophys Res 103:14 451–14 510

    Article  Google Scholar 

  • Wilcox EM (2012) Direct and semi0direct radiative forcing of smoke aerosols over clouds. Atmos Chem Phys 12:139–149

    Google Scholar 

  • Wilks DS (2006) Statistical methods in atmospheric science. International Geophysics 91. Academic, Burlington

Download references

Acknowledgments

The first author thanks the Ministry of Earth Science, Govt. of India for giving the opportunity to work for National Monsoon Mission and MAPAN Programme. The authors also acknowledge all the organizations for making the data available for research. The authors gratefully acknowledge the anonymous reviewers and the Editor-in-Chief for constructive comments which aided in improving the clarity of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutapa Chaudhuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhuri, S., Pal, J. Cloud–aerosol coupled index in estimating the break phase of Indian summer monsoon. Theor Appl Climatol 118, 447–464 (2014). https://doi.org/10.1007/s00704-013-1077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-1077-8

Keywords

Navigation