Skip to main content

Advertisement

Log in

Human biometeorological analysis of the thermal conditions of the hot Turkish city of Şanliurfa

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This paper offers a throughout human biometeorological assessment about the thermal conditions of Şanliurfa in one of the hottest parts of Turkey, in the hottest period of the year (from April to October), and a comparative analysis of three built-up types (urban, suburban and rural). Therefore, the values of physiologically equivalent temperature (PET), one of the most extensively used indices, were calculated from basic climate data with the help of the RayMan model. It was found by regarding the resulted mean PET values and the occurrence frequency of extreme heat stress periods (PET values above 41 °C) that the urban area exhibited the most unfavourable properties, followed by the suburban and rural areas. We also found very severe heat stress conditions in the summer, which may be explained by the torrid and arid climate, calm air conditions and the lack of abundant vegetation. Aiming to optimise human thermal conditions, thereby improving local life quality and facilitating international tourism, increment of vegetated areas and water surfaces would be required and, of course, highlighting the traditional methods taking into account the important aspects of sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7

Similar content being viewed by others

References

  • Abdel-Ghany AM, Al-Helal IM, Shady MR, Shad MR (2013) Human thermal comfort and heat stress in an outdoor urban arid environment: a case study, Advances in Meteorology, vol. 2013, Article ID 693541, 7 pages, 2013. doi:10.1155/2013/693541

  • Ali-Toudert F, Mayer H (2007) Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Sol Energy 81:742–754

    Article  Google Scholar 

  • ANSI/ASHRAE (2004) Standard 55-2004, thermal environmental conditions for human occupancy. ASHRAE, Atlanta

    Google Scholar 

  • Azevedo PV, Bezerra PTC, Leitão MMVBR, Dos Santos CAC (2015) Characterization of human thermal comfort in urban areas of Brazilian semiarid. Revista Brasileira de Meteorologia 30(4):371–380. doi:10.1590/0102-778620140149

    Article  Google Scholar 

  • Bleta A, Nastos PT, Matzarakis A (2014) Assessment of bioclimatic conditions on Crete Island, Greece. Reg Environ Chang 14:1967–1981

    Article  Google Scholar 

  • Caliskan O, Cicek I, Matzarakis A (2012) The climate and bioclimate of Bursa (Turkey) from the perspective of tourism. Theor Appl Climatol 107(3–4):417–425 Retrieved from <Go to ISI>://WOS:00030008260007

    Article  Google Scholar 

  • Charalampopoulos I, Tsiros I, Chronopoulou-Sereli A, Matzarakis A (2013) Analysis of thermal bioclimate in various urban configurations in Athens, Greece. Urban Ecosyst 16:217–233

    Article  Google Scholar 

  • Çınar İ (1999) Fiziksel planlamada biyoklimatik veriler kullanarak biyokonforun oluşturulması üzerine Fethiye merkezi yerleşimi üzerinde araştırmalar Ege Üniversitesi Fen Bilimleri Enstitüsü Peyzaj Mimarlığı ABD. Yüksek Lisans Tezi. 101 s

  • Çınar İ (2004) Biyoklimatik konfor ölçütlerinin peyzaj planlama sürecinde etkinliği üzerinde Muğla-Karabağlar yaylası örneğinde araştırmalar. Ege Üniversitesi Fen Bilimleri Enstitüsü Peyzaj Mimarlığı ABD. Doktora Tezi

  • Cohen P, Potchter O, Matzarakis A (2012) Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Build Environ 51:285–295

    Article  Google Scholar 

  • de Freitas CR (2003) Tourism climatology: evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int J Biometeorol 48:45–54

    Article  Google Scholar 

  • de Freitas CR, Scott D, McBoyle G (2008) A second generation climate index for tourism (CIT): specification and verification. Int J Biometeorol 52:399–407

    Article  Google Scholar 

  • Endler C, Matzarakis A (2011a) Climatic potential for tourism in the Black Forest, Germany—winter season. Int J Biometeorol 55:339–351

    Article  Google Scholar 

  • Endler C, Matzarakis A (2011b) Climate and tourism in the Black Forest during the warm season. Int J Biometeorol 55:173–186

    Article  Google Scholar 

  • Endler C, Oehler K, Matzarakis A (2010) Vertical gradient of climate change and climate tourism conditions in the Black Forest. Int J Biometeorol 54:45–61

    Article  Google Scholar 

  • Epstein Y, Moran DS (2006) Thermal comfort and the heat stress indices. Ind Health 44:388–398

    Article  Google Scholar 

  • Fanger PO (1972) Thermal comfort. McGraw-Hill, New York

    Google Scholar 

  • Fröhlich D, Matzarakis A (2013) Modeling of changes in thermal bioclimate: examples based on urban spaces in Freiburg, Germany. Theor Appl Climatol 111:547–558

    Article  Google Scholar 

  • Gómez F, Pérez Cueva A, Valcuende M, Matzarakis A (2013) Research on ecological design to enhance comfort in open spaces of a city (Valencia, Spain). Utility of the physiologically equivalent temperature (PET). Ecol Eng 57:27–39

    Article  Google Scholar 

  • Grigorieva EA, Matzarakis A (2011) Physiologically equivalent temperature as a factor for tourism in extreme climate regions in the Russian Far East: preliminary results. European Journal of Tourism, Hospitality and Recreation 2:127–142

    Google Scholar 

  • Gulyás Á (2009) Human-biometeorological assessments at different scales (in Hungarian: Humán bioklimatológiai értékelések különböző léptékű megközelítésben). PhD theses, Doctoral School of Earth Science, University of Szeged, 109 p. http://www2.sci.u-szeged.hu/fokozatok/PDF/Gulyas_Agnes/Gulyas_Agnes_PhD_tezisek_angol.pdf

  • Gulyás Á, Unger J, Matzarakis A (2006) Assessment of the microclimatic and human comfort conditions in a complex urban environment: modelling and measurements. Build Environ 41:1713–1722

    Article  Google Scholar 

  • Gulyás Á, Matzarakis A, Unger J (2010) Comparison of the urban–rural comfort sensation in a city with warm continental climate. Proceedings of BIOMET 7 473–479

  • Höppe P (1993) Heat balance modelling. Experientia 49:741–746

    Article  Google Scholar 

  • Höppe P (1999) The physiologically equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75

    Article  Google Scholar 

  • Huttner S, Bruse M, Dostal P (2008) Using ENVI-met to simulate the impact of global warming on the microclimate in central European cities. Ber Meteor Inst Albert-Ludwigs-Univ Freiburg 18:307–312

    Google Scholar 

  • Hwang RL, Lin TP, Matzarakis A (2011) Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build Environ 46:863–870

    Article  Google Scholar 

  • Jendritzky G, Nübler W (1981) A model analysing the urban thermal environment in physiologically significant terms. Arch Meteorol Geophys Bioclimatol B 29:313–326

    Article  Google Scholar 

  • Jendritzky G, Menz H, Schirmer H, Schmidt-Kessen W (1990) Methodik zur raumbezogenen Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell). Beitr Akad Raumforsch Landesplan, No. 114

  • Jendritzky G, Bröde P, Fiala D, Havenith G, Weihs P, Batchvarova E, de Dear R (2010) Der Thermische Klimaindex UTCI. Klimastatusbericht Deutscher Wetterdienst DWD, Offenbach

    Google Scholar 

  • Kántor N, Unger J (2011) The most problematic variable in the course of human-biometeorological comfort assessment—the mean radiant temperature. Cent Eur J Geosci 3(1):90–100

    Google Scholar 

  • Kántor N, Matzarakis A, Lin TP (2014) Daytime relapse of the mean radiant temperature based on the six-directional method under unobstructed solar radiation. Int J Biometeorol 58:1615–1625

    Article  Google Scholar 

  • Kántor N, Kovács A, Lin TP (2015) Looking for simple correction functions between the mean radiant temperature from the “standard black globe” and the “six-directional” techniques in Taiwan. Theor Appl Climatol 121:99–111

    Article  Google Scholar 

  • Kántor N, Kovács A, Takács Á (2016) Small-scale human-biometeorological impacts of shading by a large tree. Open Geosc. doi:10.1515/geo-2016-0021

    Google Scholar 

  • Karaca M, Tayanç M, Toros M (1995) Effects of urbanization on climate of Istanbul and Ankara. Atmos Environ 29(23):3411–3421

    Article  Google Scholar 

  • Kovács A, Németh Á (2012) Tendencies and differences in human thermal comfort in distinct urban areas in Budapest, Hungary. Acta Climatologica Et Chorologica Universitatis Szegediensis, Tomus 46:115–124

    Google Scholar 

  • Lee H, Holst J, Mayer H (2013) Modification of human-biometeorologically significant radiant flux densities by shading as local method to mitigate heat stress in summer within urban street canyons. Adv. Meteorol. Article ID 312572

  • Lin TP, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290

    Article  Google Scholar 

  • Lin T-P, Matzarakis A, Hwand R-L (2010) Shading effect on long-term outdoor thermal comfort. Build Environ 45:213–211

    Article  Google Scholar 

  • Matzarakis A (2007) Assessment method for climate and tourism based on daily data. In: A Matzarakis, CR de Freitas, D Scott (Eds) Developments in tourism climatology, 52–58

  • Matzarakis A, Amelung B (2008) Physiologically equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. In: Thomson MC, Garcia-Herrera R, Beniston M (eds) Seasonal forecasts, climatic change and human health. Advances in global change research 30. Springer-Sciences and Business Media, Berlin, pp. 161–172

    Chapter  Google Scholar 

  • Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO Newsletter 18:7–10

    Google Scholar 

  • Matzarakis A, Mayer H (1997) Heat stress in Greece. Int J Biometeorol 41:34–39

    Article  Google Scholar 

  • Matzarakis A, Mayer H, Izomon MG (1999) Application of a universal thermal index: physiologically equivalent temperature. Int J Biometeorol 43:76–84

    Article  Google Scholar 

  • Matzarakis A, Matuschek O, Neumcke R, Rutz F, Zalloom M (2007a) Climate change scenarios and tourism—how to handle and operate with data. In: Matzarakis A, de Freitas CR, Scott D Developments in tourism climatology, 240–245

  • Matzarakis A, Rutz F, Mayer H (2007b) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334

    Article  Google Scholar 

  • Matzarakis A, de Rocco M, Najjar G (2009) Thermal bioclimate in Strasbourg—the 2003 heat wave. Theor Appl Climatol 98:209–220

    Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2010a) Modelling radiation fluxes in simple and complex environments—basics of the RayMan model. Int J Biometeorol 54:131–139

    Article  Google Scholar 

  • Matzarakis A, Rudel E, Zygmuntowski M, Koch E (2010b) Bioclimatic maps for tourism purposes. Phys Chem Earth 35:57–62

    Article  Google Scholar 

  • Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49

    Article  Google Scholar 

  • Mayer H, Kuppe S, Holst J, Imbery F, Matzarakis A (2009) Human thermal comfort below the canopy of street trees on a typical Central European summer day. H Mayer, A Matzarakis (eds) 5th Japanese-German Meeting on Urban Climatology. Ber. Meteor. Inst. Univ. Freiburg Nr. 18, 211–219

  • Müller N, Kuttler W, Barlag AB (2014) Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theor Appl Climatol 115:243–257

    Article  Google Scholar 

  • Nikolopoulou M, Lykoudis S (2007) Use of outdoor spaces and microclimate in a Mediterranean urban area. Build Environ 42:3691–3707

    Article  Google Scholar 

  • Rodríguez Algeciras JA, Matzarakis A (2016) Quantification of thermal bioclimate for the management of urban design in Mediterranean climate of Barcelona, Spain. Int J Biometeorol 60:1261

    Article  Google Scholar 

  • Shashua-Bar L, Pearlmutter D, Erell E (2011) The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int J Climatol 31:1498–1506

    Article  Google Scholar 

  • Spagnolo J, de Dear R (2003a) A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build Environ 38:721–738

    Article  Google Scholar 

  • Spagnolo J, de Dear R (2003b) A human thermal climatology of subtropical Sydney. Int J Climatol 23:1383–1395

    Article  Google Scholar 

  • Steadman RG (1971) Indices of windchill of clothed persons. J Appl Meteorol 10:674–683

    Article  Google Scholar 

  • Streiling S, Matzarakis A (2003) Influence of single and small clusters of trees on the bioclimate of a city: a case study. J Arboric 29(6):309–316

    Google Scholar 

  • Swensson M, Thorsson S, Lindqvist S (2003) A geographical information system model for creating bioclimatic maps—examples from a high, mid-latitude city. Int J Biometeorol 47:102–112

    Google Scholar 

  • Tayanç M, Toros H (1997) Urbanization effects on regional climate change in the case of four large cities of Turkey. Clim Chang 35:501–524

    Article  Google Scholar 

  • Thom EC (1959) The discomfort index. Weatherwise 12:57–60

    Article  Google Scholar 

  • Toy S (2004) Determination of bioclimatic effect in the open green spaces of Erzurum. Atatürk University Graduate School of Natural and Applied Sciences Department of Landscape Architecture. Unpublished Ms. Thesis. 101 pp

  • Toy S, Yilmaz S (2010a) Evaluation of urban-rural bioclimatic comfort differences over a ten-year period in the sample of Erzincan city reconstructed after a heavy earthquake. Atmosfera 23(4):387–402 Retrieved from <Go to ISI>://WOS:000286301800006

    Google Scholar 

  • Toy S, Yilmaz S (2010b) Thermal sensation of people performing recreational activities in shadowy environment: a case study from Turkey. Theor Appl Climatol 101(3–4):329–343. doi:10.1007/s00704-009-0220-z

    Article  Google Scholar 

  • Toy S, Yilmaz S, Yilmaz H (2007) Determination of bioclimatic comfort in three different land uses in the city of Erzurum, Turkey. Build Environ 42(3):1315–1318

    Article  Google Scholar 

  • Türkeş M, Sümer UM (2004) Spatial and temporal patterns of trends and variability in diurnal temperature ranges of Turkey. Theor Appl Climatol 77:195–227

    Article  Google Scholar 

  • Türkeş M, Sümer UM, Demir İ (2002) Re-evaluation of trends and changes in mean, maximum and minimum temperatures of Turkey for the period 1929-1999. Int J Climatol 22:947–977

    Article  Google Scholar 

  • Türkoğlu N, Çalışkan O, Çiçek İ, Yılmaz E (2012) Şehirleşmenin biyoklimatik koşullara etkisinin Ankara ölçeğinde incelenmesi. The analysis of impact of urbanization on the bioclimatic conditions in the scale of Ankara. Uluslararası İnsan Bilimleri Dergisi 1(9):933–954

    Google Scholar 

  • TurkStat (2015) Turkish Statistics Institution. http://www.tuik.gov.tr/PreTablo.do?alt_id=1059

  • Unger J (1999) Comparisons of urban and rural bioclimatological conditions in the case of a central-European city. Int J Biometeorol 43:139–144

    Article  Google Scholar 

  • VDI (1998) Methods for the human-biometeorological assessment of climate and air hygiene for urban and regional planning. Part I: climate. VDI 3787, Part 2. Beuth, Berlin, 29 p

  • Vitt R, Gulyás A, Matzarakis A (2015) Temporal differences of urban–rural human biometeorological factors for planning and tourism in Szeged, Hungary. Adv Meteorol 2015:1–8. doi:10.1155/2015/987576

  • WMO (1992) Climatic impacts and applications. No 726, Chapter 6, 72–80

  • Yılmaz S, Toy S, Irmak MA, Yılmaz H (2007) Determination of climatic differences in three different land uses in the city of Erzurum, Turkey. Build Environ 42(2007):1604–1612

    Article  Google Scholar 

  • Zauli SS, Tibaldi S, Scotto F, Lauriola P (2008) Bioclimatic characterisation of an urban area: a case study in Bologna (Italy). Int J Biometeorol 52:779–785

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süleyman Toy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toy, S., Aytaç, A.S. & Kántor, N. Human biometeorological analysis of the thermal conditions of the hot Turkish city of Şanliurfa. Theor Appl Climatol 131, 611–623 (2018). https://doi.org/10.1007/s00704-016-1995-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1995-3

Navigation