Skip to main content
Log in

Trends in temperature extremes over nine integrated agricultural regions in China, 1961–2011

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

By characterizing the patterns of temperature extremes over nine integrated agricultural regions (IARs) in China from 1961 to 2011, this study performed trend analyses on 16 extreme temperature indices using a high-resolution (0.5° × 0.5°) daily gridded dataset and the Mann-Kendall method. The results show that annually, at both daytime and nighttime, cold extremes significantly decreased but warm extremes significantly increased across all IARs. Overall, nighttimes tended to warm faster than daytimes. Diurnal temperature ranges (DTR) diminished, apart from the mid-northern Southwest China Region and the mid-Loess Plateau Region. Seasonally, DTR widely diminished across all IARs during the four seasons except for spring. Higher minimum daily minimum temperature (TNn) and maximum daily maximum temperature (TXx), in both summer and winter, were recorded for most IARs except for the Huang-Huai-Hai Region; in autumn, all IARs generally encountered higher TNn and TXx. In all seasons, warming was observed at daytime and nighttime but, again, nighttimes warmed faster than daytimes. The results also indicate a more rapid warming trend in Northern and Western China than in Southern and Eastern China, with accelerated warming at high elevations. The increases in TNn and TXx might cause a reduction in agriculture yield in spring over Northern China, while such negative impact might occur in Southern China during summer. In autumn and winter, however, the negative impact possibly occurred in most of the IARs. Moreover, increased TXx in the Pearl River Delta and Yangtze River Delta is possibly related to rapid local urbanization. Climatically, the general increase in temperature extremes across Chinese IARs may be induced by strengthened Northern Hemisphere Subtropical High or weakened Northern Hemisphere Polar Vortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abatzoglou JT (2013) Development of gridded surface meteorological data for ecological applications and modelling. Int J Climatol 33:121–131

    Article  Google Scholar 

  • AghaKouchak A, Cheng L, Mazdiyasni O, Farahmand A (2014) Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys Res Lett 41:8847–8852. doi:10.1002/2014GL062308

    Article  Google Scholar 

  • Alexander LV, Zhang X, Perterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111, D05109. doi:10.1029/2005JD006290

    Google Scholar 

  • Almazroui M, Islam MN, Dambul R, Jones PD (2014) Trends of temperature extremes in Saudi Arabia. Int J Climatol 34:808–826. doi:10.1002/joc.3722

    Article  Google Scholar 

  • Assessment report of China’s ground temperature 0.5° × 0.5° gridded dataset (V2.0) (2012) National Meteorological Information Center, Beijing

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Climate Change 59:5–31

    Article  Google Scholar 

  • Beniston M, Rebetez M (1996) Regional behavior of minimum temperatures in Switzerland for the period 1979–1993. Theor Appl Climatol 53:231–243

    Article  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature change: a new data set from 1850. J Geophys Res Atmos 111, D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  • Donat MG, Alexander LV (2012) The shifting probability distribution of global daytime and night-time temperatures. Geophys Res Lett 39, L14707. doi:10.1029/2012GL052459

    Article  Google Scholar 

  • Durre I, Wallace JM, Lettenmaier DP (2000) Dependence of extreme daily maximum temperature on antecedent soil moisture in the contiguous United States during summer. J Clim 13:2641–2651

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  Google Scholar 

  • Fan Z, Bräuning A, Thomas A, Li J, Cao K (2011) Spatial and temporal temperature trends on the Yunnan Plateau (Southwest China) during 1961–2004. Int J Climatol 31:2078–2090

    Article  Google Scholar 

  • Frank T (2005) Climate change impacts on building heating and cooling energy demand in Switzerland. Energy Build 37:1175–1185

    Article  Google Scholar 

  • Gao Y, Feng Q, Liu W, Lu A, Wang Y, Yang J, Cheng A, Wang Y, Su Y, Liu L, Ma Q (2014) Changes of daily climate extremes in Loess Plateau during 1960–2013. Quat Int 1–17. doi:10.1016/j.quaint. 2014.08.052

  • Gu S, Yang X (2006) Variability of the northern circumpolar vortes and its association with climate anomaly in China. Sci Meteorologica Sin 26:135–142

    Google Scholar 

  • Guan Y, Zhang X, Zheng F, Wang B (2015) Trends and variability of daily temperature extremes during 1960–2012 in the Yangtze River Basin, China. Glob Planet Chang 124:79–94

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Core Writing Team, Pachauri RK and Meyer LA. (eds). IPCC, Geneva, 151 pp

  • Kendall MG (1975) Rank correlation methods, 4th edn. Griffin, London, p 202

  • Klein Tank AMG, Peterson TC, Quadir DA et al (2006) Changes in daily temperature and precipitation extremes in central and south Asia. J Geophys Res 111, D16105. doi:10.1029/2005JD006316

    Article  Google Scholar 

  • Li Z, He Y, Wang P, Theakstone WH, An W, Wang X, Lu A, Zhang W, Cao W (2012) Changes of daily climate extremes in southwestern China during 1961–2008. Glob Planet Chang 80–81:255–272

    Google Scholar 

  • Liang K, Bai P, Li J, Liu C (2014) Variability of temperature extremes in the Yellow River basin during 1961–2011. Quat Int 336:52–64

    Article  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503

    Article  Google Scholar 

  • Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259

  • Miranda PMA, Tome AR (2009) Spatial structure of the evolution of surface temperature (1951–2004). Clim Chang 93:269–284. doi:10.1007/s10584-008-9540-8

    Article  Google Scholar 

  • Otto FEL, Massey N, van Oldenborgh GJ, Jones RG, Allen MR (2012) Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys Res Lett 39, L04702. doi:10.1029/2011GL050422

    Article  Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51

    Article  Google Scholar 

  • Ren GY, Ding YH, Zhao ZC, Zheng JY, Wu TW, Tang GL, Xu Y (2012) Recent progress in studies of climate change in China. Adv Atmos Sci 29:958–977

    Article  Google Scholar 

  • Skaggs KE, Irmak S (2012) Long-term trends in air temperature distribution and extremes, growing degree-days, and spring and fall frosts for climate impact assessments on agricultural practices in Nebraska. J Appl Meteorol Climatol 51:2060–2073. doi:10.1175/JAMC-D-11-0146.1

    Article  Google Scholar 

  • Stott P, Sone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–613

    Article  Google Scholar 

  • Sun Y, Zhang X, Zwiers FW, Song L, Wan H, Hu T, Yin H, Ren G (2014) Rapid increase in the risk of extreme summer heat in Eastern China. Nat Clim Chang 4:1082–1085. doi:10.1038/NCLIMATE2410

    Article  Google Scholar 

  • Sun Q, Miao C, Duan Q, Wang Y (2015) Temperature and precipitation changes over the Loess Plateau between 1961 and 2011, based on high-density gauge observations. Glob Planet Chang 132:1–10. doi:10.1016/j.gloplacha.2015.05.011

    Article  Google Scholar 

  • Tao H, Fraedrich K, Menz C, Zhai J (2014) Trends in extreme temperature indices in the Poyang Lake Basin, China. Stoch Env Res Risk A 28:1543–1553. doi:10.1007/s00477-014-0863-x

    Article  Google Scholar 

  • Tian L, Yao T, Li Z, MacClune K, Wu G, Xu B, Li Y, Lu A, Shen Y (2006) Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs. J Geophys Res 111:D13103. doi:10.1029/2005JD006249

    Article  Google Scholar 

  • Vallis GK, Zurita-Gotor P, Cairns C, Kidston J (2015) Response of the large-scale structure of the atmosphere to global warming. Q J R Meteorol Soc 141:1479–1501

    Article  Google Scholar 

  • Vincent LA, Mekis E (2006) Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmosphere-Ocean 44:177–193. doi:10.1029/2005JD006316

    Article  Google Scholar 

  • Viola F, Liuzzo L, Noto LV, Conti FL, Loggia GL (2014) Spatial distribution of temperature trends in Sicily. Int J Climatol 34:1–17. doi:10.1002/joc.3657

    Article  Google Scholar 

  • Wang A, Fu J (2013) Changes in daily climate extremes of observed temperature and precipitation in China. Atmos Oceanic Sci Lett 6:312–319. doi:10.3878/j.issn.1674-2834.12.0106

    Article  Google Scholar 

  • Wang Q, Zhang M, Wang S, Ma Q, Sun M (2014) Changes in temperature extremes in the Yangtze River Basin, 1962–2011. J Geogr Sci 24:59–75. doi:10.1007/s11442-014-1073-7

    Article  Google Scholar 

  • Wigley TML (1985) Climatology: impact of extreme events. Nature 316:106–107

    Article  Google Scholar 

  • Wu X, Wang Z, Zhou X, Lai C, Lin W, Chen X (2015) Observed changes in precipitation extremes across 11 basins in China during 1961–2013. Int J Climatol. doi:10.1002/joc.4524

    Google Scholar 

  • Xu X, Lin H, Hou L, Yao X (2002) An assessment for sustainable developing capability of integrated agricultural regionalization in China. Chin Geogr Sci 12:1–8

    Article  Google Scholar 

  • Yang H, Yang D, Hu Q, Lv H (2014) Spatial variability of the trends in climatic variables across China during 1961–2010. Theor Appl Climatol 120:773–783. doi:10.1007/s00704-014-1208-x

    Article  Google Scholar 

  • You Q, Kang S, Pepin N, Yan Y (2008) Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961–2005. Geophys Res Lett 35, L04704. doi:10.1029/2007GL032669

    Article  Google Scholar 

  • You Q, Kang S, Aguilar E, Pepin N, Flugel W, Yan Y, Xu Y, Zhang Y, Huang Z (2009) Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim Dyn 36:2399–2417. doi:10.1007/s00382-009-0735-0

    Article  Google Scholar 

  • Zhai P, Pan X (2003) Trends in temperature extremes during 1951–1999 in China. Geophys Res Lett 30(17):1913. doi:10.1029/2003GL018004

    Article  Google Scholar 

  • Zhang X, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20th century. Atmosphere-Ocean 38:395–429

    Article  Google Scholar 

  • Zhang Q, Li J, Chen YD, Chen X (2011a) Observed changes of temperature extremes during 1960–2005 in China: natural or human-induced variations? Theor Appl Climatol 106:417–431. doi:10.1007/s00704-011-0447-3

    Article  Google Scholar 

  • Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011b) Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change 2:851–870. doi:10.1002/wcc.147

    Article  Google Scholar 

  • Zhang D, Xu W, Li J, Cai Z, An D (2013) Frost-free season lengthening and its potential cause in the Tibetan Plateau from 1960 to 2010. Theor Appl Climatol 115:441–450

    Article  Google Scholar 

  • Zhang Z, Song X, Tao F, Zhang S, Shi W (2016) Climate trends and crop production in China at county scale, 1980 to 2008. Theor Appl Climatol 123:291–302. doi:10.1007/s00704-014-1343-4

    Article  Google Scholar 

  • Zhou Y, Ren G (2011) Change in extreme temperature event frequency over mainland China, 1961–2008. Clim Res 50:125–139. doi:10.3354/cr01053

    Article  Google Scholar 

Download references

Acknowledgments

The research is financially supported by the National Natural Science Foundation of China (Grant No. 51209095, 51579105), the National Science and Technology Support Program (Grant No. 2012BAC21B0103), and the Fundamental Research Funds for the Central Universities (2014ZZ0027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoli Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1940 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, Z., Zhou, X. et al. Trends in temperature extremes over nine integrated agricultural regions in China, 1961–2011. Theor Appl Climatol 129, 1279–1294 (2017). https://doi.org/10.1007/s00704-016-1848-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1848-0

Keywords

Navigation