Skip to main content

Advertisement

Log in

Detection of trends in days with extreme temperatures in Iran from 1961 to 2010

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Human health and comfort, crop productivity, water resource availability, as well as other critical hydrological, climatological, and ecological parameters are heavily influenced by trends in daily temperature maxima and minima (T d max, T d min, respectively). Using Mann–Kendall and sequential Mann–Kendall tests, trends in the number of days when T d max ≥ 30 °C or T d min ≤ 0 °C, over the period of 1961 to 2010, were examined for 30 synoptic meteorological stations in Iran. For 67 % of stations, days when T d min ≤ 0 °C showed a significant negative trend, while only 40 % of stations showed a significant positive trend in days when T d max ≥ 30 °C. The upward trend in T d max became significant between 1967 and 1975, according to the station, while the downward trend in T d min became significant between 1962 and 1974 for the same stations. Changes in precipitation type across most parts of the country show a high correlation with these temperature trends, especially with the negative trend in T d min. This suggests that future climatological and hydrological alterations within the country, along with ensuing climatic issues (e.g., change in precipitation, drought, etc.) will require a great deal more attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamowski J, Adamowski K, Bougadis J (2010) Influence of trend on short duration design storms. Water Resour Manag 24:401–413

  • Adamowski K, Prokoph A, Adamowski J (2009) Development of a new method of wavelet aided trend detection and estimation. Hydrol Process 23, 18

  • Ahrens CD (2009) Meteorology today, 9th edn. Cengage Learning, California, 621 pp

    Google Scholar 

  • Ahrens CD (2011) Essentials of meteorology, 6th edn. Cengage Learning, USA, 528 pp

    Google Scholar 

  • Araghi A, Mousavi Baygi M, Adamowski J, Malard J, Nalley D, Hasheminia SM (2015) Using wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran based on gridded reanalysis data. Atmos Res 155:52–72

    Article  Google Scholar 

  • Bapuji Rao B, Santhibhushan Chowdary P, Sandeep VM, Rao VUM, Venkateswarlu B (2014) Rising minimum temperature trends over India in recent decades: implications for agricultural production. Glob Planet Chang 117:1–8

    Article  Google Scholar 

  • Barry RG, Chorley RJ (2009) Atmosphere, weather and climate, 9th edn. Routledge, New York, 536 pp

    Google Scholar 

  • Brown MB, Forsythe AB (1974) Robust tests for the equality of variances. J Am Stat Assoc 69(346):364–367

    Article  Google Scholar 

  • Connor DJ, Loomis RS, Cassman KG (2011) Crop ecology, 2nd edn. Cambridge University, New York, 556 pp

    Book  Google Scholar 

  • Croitoru A-E, Holobaca I-H, Lazar C, Moldovan F, Imbroane A (2012) Air temperature trend and the impact on winter wheat phenology in Romania. Clim Chang 111(2):393–410

  • del Río S, Herrero L, Pinto-Gomes C, Penas A (2011) Spatial analysis of mean temperature trends in Spain over the period 1961–2006. Glob Planet Chang 78(1–2):65–75

    Google Scholar 

  • Dinar A, Mendelsohn R (2011) Handbook on climate change and agriculture. Edward Elgar, UK, 515 pp

  • Dinpashoh Y, Jhajharia D, Fakheri-Fard A, Singh VP, Kahya E (2011) Trends in reference crop evapotranspiration over Iran. J Hydrol 399(3–4):422–433

    Article  Google Scholar 

  • Duhan D, Pandey A (2013) Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmos Res 122:136–149

    Article  Google Scholar 

  • Farajzadeh M, Karimi N (2014) Evidence for accelerating glacier ice loss in the Takht’e Solaiman Mountains of Iran from 1955 to 2010. J Mt Sci 11(1):215–235

    Article  Google Scholar 

  • Gadgil A, Dhorde A (2005) Temperature trends in twentieth century at Pune, India. Atmos Environ 39(35):6550–6556

    Article  Google Scholar 

  • Galdies C (2012) Temperature trends in Malta (central Mediterranean) from 1951 to 2010. Meteorol Atmos Phys 117(3–4):135–143

    Article  Google Scholar 

  • Gevorgyan A (2014) Surface and tropospheric temperature trends in Armenia. Int J Climatol 34(13):3559–3573

    Article  Google Scholar 

  • Ghasemi AR, Khalili D (2006) The influence of the Arctic Oscillation on winter temperatures in Iran. Theor Appl Climatol 85(3–4):149–164

    Article  Google Scholar 

  • Halbe J, Adamowski J, Bennett E, Pahl-Wostl C, Farahbakhsh K (2014) Functional organization analysis for the design of sustainable engineering systems. Ecol Eng 73:80–91

  • Halbe J, Pahl-Wostl C, Sendzimir J, Adamowski J (2013) Towards adaptive and integrated management paradigms to meet the challenges of water governance. Water Sci Technol Water Supply 67:2651–2660

  • Hamed KH, Ramachandra Rao A (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204(1–4):182–196

    Article  Google Scholar 

  • Henderson-Sellers A, McGuffie K (2012) The future of the world's climate. Elsevier, UK, 650 pp

  • Hirsch RM, Slack JR (1984) A nonparametric trend test for seasonal data with serial dependence. Water Resour Res 20(6):727–732

    Article  Google Scholar 

  • IPCC (2013) Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Assessment Report. Intergovernmental Panel on Climate Change, New York

    Google Scholar 

  • Karamouz M, Nazif S, Falahi M (2013) Hydrology and hydroclimatology, principles and applications. CRC Press, New York, 731 pp

    Google Scholar 

  • Kousari MR, Ahani H, Hendi-zadeh R (2013) Temporal and spatial trend detection of maximum air temperature in Iran during 1960–2005. Glob Planet Chang 111:97–110

    Article  Google Scholar 

  • Lutgens FK, Tarbuck EJ (2013) The atmosphere, an introduction to meteorology, 12th edn. Prentice Hall, USA, 528 pp

    Google Scholar 

  • Modarres R, de Paulo Rodrigues da Silva V (2007) Rainfall trends in arid and semi-arid regions of Iran. J Arid Environ 70(2):344–355

    Article  Google Scholar 

  • Nalley D, Adamowski J, Khalil B (2012) Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). J Hydrol 475:204–228

    Article  Google Scholar 

  • Nalley D, Adamowski J, Khalil B, Ozga-Zielinski B (2013) Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. Atmos Res 132–133:375–398

    Article  Google Scholar 

  • Nsubuga FW, Olwoch JM, Rautenbach H (2014) Variability properties of daily and monthly observed near-surface temperatures in Uganda: 1960–2008. Int J Climatol 34(2):303–314

    Article  Google Scholar 

  • Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20(9):2011–2026

    Article  Google Scholar 

  • Partal T, Küçük M (2006) Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey). Phys Chem Earth 31(18):1189–1200

    Article  Google Scholar 

  • Pingale SM, Khare D, Jat MK, Adamowski J (2014) Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmos Res 138:73–90

    Article  Google Scholar 

  • Rahimzadeh F, Asgari A, Fattahi E (2009) Variability of extreme temperature and precipitation in Iran during recent decades. Int J Climatol 29(3):329–343

    Article  Google Scholar 

  • Raziei T, Bordi I, Pereira LS, Corte-Real J, Santos JA (2012) Relationship between daily atmospheric circulation types and winter dry/wet spells in western Iran. Int J Climatol 32(7):1056–1068

    Article  Google Scholar 

  • Raziei T, Bordi I, Santos JA, Mofidi A (2013) Atmospheric circulation types and winter daily precipitation in Iran. Int J Climatol 33(9):2232–2246

    Article  Google Scholar 

  • Richardson K, Steffen W, Liverman D (2011) Climate change: global risks, challenges and decisions. Cambridge University Press, New York, 501 pp

    Book  Google Scholar 

  • Saadat H, Adamowski J, Bonnell R, Sharifi F, Namdar M, Ale-Ebrahim S (2011) Land use and land cover classification over a large area in Iran based on single date analysis of satellite imagery. J Photogramm Remote Sens 66:608–619

  • Saboohi R, Soltani S, Khodagholi M (2012) Trend analysis of temperature parameters in Iran. Theor Appl Climatol 109(3–4):529–547

    Article  Google Scholar 

  • Safeeq M, Mair A, Fares A (2013) Temporal and spatial trends in air temperature on the Island of Oahu, Hawaii. Int J Climatol 33(13):2816–2835

    Article  Google Scholar 

  • Shadmani M, Marofi S, Roknian M (2012) Trend analysis in reference evapotranspiration using Mann–Kendall and Spearman’s rho tests in arid regions of Iran. Water Resour Manag 26(1):211–224

    Article  Google Scholar 

  • Shelton M (2009) Hydroclimatology, perspectives and applications. Cambridge University Press, New York, 438 pp

    Google Scholar 

  • Shi W, Yu X, Liao W, Wang Y, Jia B (2013) Spatial and temporal variability of daily precipitation concentration in the Lancang River basin, China. J Hydrol 495:197–207

    Article  Google Scholar 

  • Shifteh Some’e B, Ezani A, Tabari H (2012) Spatiotemporal trends and change point of precipitation in Iran. Atmos Res 113:1–12

    Article  Google Scholar 

  • Shifteh Some’e B, Ezani A, Tabari H (2013) Spatiotemporal trends of aridity index in arid and semi-arid regions of Iran. Theor Appl Climatol 111(1–2):149–160

    Article  Google Scholar 

  • Sneyers R (1990) On the statistical analysis of series of observations. Secretariat of the World Meteorological Organization, Geneva, 192 pp

  • Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, New York, 484 pp

    Book  Google Scholar 

  • Tabari H, Hosseinzadeh Talaee P (2011) Analysis of trends in temperature data in arid and semi-arid regions of Iran. Glob Planet Chang 79(1–2):1–10

    Article  Google Scholar 

  • Tabari H, Talaee PH (2011) Recent trends of mean maximum and minimum air temperatures in the western half of Iran. Meteorol Atmos Phys 111(3–4):121–131

    Article  Google Scholar 

  • Tabari H, Marofi S, Aeini A, Talaee PH, Mohammadi K (2011a) Trend analysis of reference evapotranspiration in the western half of Iran. Agric For Meteorol 151(2):128–136

    Article  Google Scholar 

  • Tabari H, Somee BS, Zadeh MR (2011b) Testing for long-term trends in climatic variables in Iran. Atmos Res 100(1):132–140

    Article  Google Scholar 

  • Tabari H, Abghari H, Hosseinzadeh Talaee P (2012) Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrol Process 26(22):3351–3361

    Article  Google Scholar 

  • USDA (2013) Climate change and agriculture in the United States: effects and adaptation. USDA, USA,186 pp

  • Viola F, Liuzzo L, Noto LV, Lo Conti F, La Loggia G (2014) Spatial distribution of temperature trends in Sicily. Int J Climatol 34(1):1–17.

  • Wang H, Zhang M, Zhu H, Dang X, Yang Z, Yin L (2012a) Hydro-climatic trends in the last 50 years in the lower reach of the Shiyang River Basin, NW China. Catena 95:33–41

    Article  Google Scholar 

  • Wang Q-x, Fan X-h, Qin Z-d, Wang M-b (2012b) Change trends of temperature and precipitation in the Loess Plateau Region of China, 1961–2010. Glob Planet Chang 92–93:138–147

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric science. International Geophysics, 3rd edn. Academic Press, USA, 704 pp

    Google Scholar 

  • Yang XL, Xu LR, Liu KK, Li CH, Hu J, Xia XH (2012) Trends in temperature and precipitation in the Zhangweinan River Basin during the last 53 years. Procedia Environ Sci 13:1966–1974

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16(9):1807–1829

    Article  Google Scholar 

  • Zarenistanak M, Dhorde A, Kripalani RH, Dhorde A (2014) Trends and projections of temperature, precipitation, and snow cover during snow cover-observed period over southwestern Iran. Theor Appl Climatol 1–20

Download references

Acknowledgments

We would like to thank the editor-in-chief and anonymous reviewers for their valuable comments that helped us improve the final version of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Araghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araghi, A., Mousavi-Baygi, M. & Adamowski, J. Detection of trends in days with extreme temperatures in Iran from 1961 to 2010. Theor Appl Climatol 125, 213–225 (2016). https://doi.org/10.1007/s00704-015-1499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1499-6

Keywords

Navigation