Skip to main content
Log in

Trend analysis of temperature parameters in Iran

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

In this study, long-term annual and monthly trends in mean maximum, mean minimum and mean temperature are investigated at 35 synoptic stations in Iran. The statistical significance of trends is assessed by the Mann–Kendall test. Most stations, especially those in western and eastern parts of country, had significant positive trends in monthly temperature time series in summer season. However, the maximum number of stations with the positive trend were observed in April (30 stations), and then in August (29 stations) while the negative trends were seen in February (16 stations) and March (15 stations). On annual scale, most stations in western and southern parts of Iran had significant positive trend. Overall, about 71%, 66% and about 40% of stations had statistically significant trends in mean annual temperature, mean annual minimum temperature and in mean annual maximum temperature, respectively. These results, however, indicate that the climate in Iran is growing warmer, especially in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts JCJH, Droogers P (2004) Climate change in contrasting river basins: adaptation strategies for water, food, and environment. Biddles Ltd, King’s Lynn, UK, p 306

    Book  Google Scholar 

  • Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675

    Article  Google Scholar 

  • Amiri MJ, Eslamian SS (2010) Investigation of climate change in Iran. J Environ Sci Technol 3(4):208–216

    Article  Google Scholar 

  • Arndt, D.S., M.O. Baringer, and M.R. Johnson, Eds.: 2010, State of the climate in 2009. Bull. Am Meteorol Soc 91(6), S1–S224

    Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26. doi:10.1002/joc.859

    Article  Google Scholar 

  • Beaulieu C, Ouarda T, Seidou O (2007) A review of homogenization techniques for climate data and their applicability to precipitation series. Hydrol Sci J 52:18–37

    Article  Google Scholar 

  • Brunetti M, Buffoni L, Nanni T (2000) Trends of minimum and maximum daily temperature in Italy from 1865–1996. Theor Appl Climatol 66:49–60

    Article  Google Scholar 

  • Chaouche K, Neppel L, Dieulin C, Pujol N, Ladoucle B, Martin E, Salas D, Caballero Y (2010) Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change. CR Geosci 342:234–243

    Article  Google Scholar 

  • Chung YS, Yoon MB (2000) Interpretation of recent temperature and precipitation trends observed in Korea. Theor Appl Climatol 67:171–180

    Article  Google Scholar 

  • Dinpashoh Y, Jhajharia D, Fakheri-Fard A, Singh VP, Kahya E (2011) Trends in reference crop vapotranspiration over Iran. J Hydrol 399:422–433

    Article  Google Scholar 

  • Domroes M, El-Tantawi A (2005) Recent temporal and spatial temperature changes in Egypt. Int J Climatol 25:51–63. doi:10.1002/joc.1114

    Article  Google Scholar 

  • Elagib NA, Mansell MG (2000) Climate impacts of environmental degradation in Sudan. Geol J 50:311–327. doi:10.1023/A:1011071917001

    Google Scholar 

  • Evans JP (2010) Global warming impact on the dominant precipitation processes in the Middle East. Theor Appl Climatol 99:389–402

    Article  Google Scholar 

  • Ghasemi AR, Khalili D (2006) The influence of the Arctic Oscillation on winter temperatures in Iran. Theor Appl Climatol 85:149–164

    Article  Google Scholar 

  • Helsel DR, Hirsch RM (2002) Statistical methods in water resources. US Geol Surv pp 524

  • Hertig E, Seubert S, Jacobeit J (2010) Temperature extremes in the Mediterranean area: trends in the past and assessments for the future. Nat Hazards Earth Syst Sci 10:2039–2050. doi:10.5194/nhess-10-2039-2010

    Article  Google Scholar 

  • Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resour Res 1:107–121

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Valencia, Spain

    Google Scholar 

  • Khalili A (1991) Comprehensive water resources project of Iran. Technical report of meteorology and climatology. Jamab Consulting Engineers Co., Vol 1, 892

  • Jiangping Z, Zhong Y, Daojie W, Xinbao Z (2002) Climate change and causes in the Yuanmou dry-hot valley of Yunnan, China. J Arid Environ 51:153–162

    Article  Google Scholar 

  • Kruger AC, Shongwe S (2004) Temperature trends in South Africa: 1960–2003. Int J Climatol 24:1929–1945

    Article  Google Scholar 

  • Lazaro R, Rodrigo FS, Gutierrez L, Domingo F, Puigdefabregas J (2001) Analysis of a 30-year rainfall record (1967-1997) in semi-arid SE Spain for implications on vegetation. J Arid Environ 48:373–395

    Article  Google Scholar 

  • Masoodian SA (2004) Temperature trends in Iran during the last half century. Geographical Research Quarterly 54:29–45

    Google Scholar 

  • Maugeri M, Nanni T (1998) Surface air temperature variation in Italy: recent trends and an update to 1993. Theor Appl Climatol 61:191–196

    Article  Google Scholar 

  • Moberg A, Alexandersson H (1997a) Homogenization of Sweden temperature: Part I. Homogeneity test for linear trends. Int J Climatol 17:25–34

    Google Scholar 

  • Moberg A, Alexandersson H (1997b) Homogenization of Swedish temperature data: Part II. Homogenized gridded air temperature compared with a subset of global gridded air temperature since 1861. Int J Climatol 17:35–54

    Article  Google Scholar 

  • Modarres R, Silva V (2007) Rainfall trends in arid & semi–arid regions of Iran. J Environ 70:344–355. doi:10.1016/j.jaridenv.024

    Google Scholar 

  • Peterson TC, Easterling DA, Karl TR, Groisman P, Nicholls N, Plummer N, Torok S, Auer I, Boehm R, Gullett D, Vincent L, Heino R, Tuomenvirta H, Mestere O, Szentimrey T, Salinger J, Forland EJ, Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998) Homogeneity adjustment of in situ atmospheric climate data: a review. Int J Climatol 18:1493–1517

    Article  Google Scholar 

  • Rahimzadeh F, Fatahi A, Hosseni DF (2005) Evaluation of variability of Climate with applying statistical methods in Iran. Water Resour Res 2(1):61–73

    Google Scholar 

  • Raziei T, Arasteh PD, Saghafian B (2005) Annual rainfall trend in arid & semi–arid regions of Iran. ICID21st European regional Conference, pp 20–28

  • Saboohi R, Soltani S (2009) Trend Analysis of climatic factors in great cities of Iran. J Sci Technol Agric Nat Resour 46:303–322

    Google Scholar 

  • Salas JD (1993) Analysis and modeling of hydrologic time series. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York

    Google Scholar 

  • Santer BD, Taylor KE, Wigley TM (1996) A search for human influences on the thermal structure of the atmosphere. Nature 382:39–46

    Article  Google Scholar 

  • Shirgholami H, Ghahreman B (2005) Trend analysis of mean annual temperature in Iran. Agric Nat Resour 1:9–23

    Google Scholar 

  • Soltani S, Saboohi R, Yghmaei L (2011) Rainfall and rainy days trend in Iran. Clim Chang. doi:10.1007/s10584-011-0146-1

  • Syrakova M, Stefanova M (2009) Homogenization of Bulgarian temperature series. Int J Climatol 29:1835–1849

    Article  Google Scholar 

  • Tabari H, Shifteh Some B, Rezaeian Zadeh M (2011) Testing for long-term trends in climatic variables in Iran. Atmos Res 100:132–140

    Article  Google Scholar 

  • Unkasevic M, Vujovic D, Tosic I (2005) Trends in extreme summer temperature at Belgrade. Theor Appl Climatol 82:199–205. doi:10.1007/s00704-005-0131-6

    Article  Google Scholar 

  • Yu PS, Yang TC, Kuo CC (2006) Evaluating long-term trends in annual and seasonal precipitation in Taiwan. Water Resour Manag 20:1007–1023. doi:10.1007/s11269-006-9020-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Soltani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saboohi, R., Soltani, S. & Khodagholi, M. Trend analysis of temperature parameters in Iran. Theor Appl Climatol 109, 529–547 (2012). https://doi.org/10.1007/s00704-012-0590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0590-5

Keywords

Navigation