Skip to main content
Log in

Investigation of Valiantzas’ evapotranspiration equation in Iran

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Several methods are available to estimate the reference evapotranspiration including mass transfer-based, radiation-based, temperature-based, and pan evaporation-based methods. The most important weather parameters are solar radiation, temperature, relative humidity, and wind speed for evapotranspiration models. This study aims to compare five forms of Valiantzas’ evapotranspiration methods (one of the newest models) as well as Priestley–Taylor and Turc models to detect the best one under different weather conditions. For this purpose, weather data were gathered from 181 synoptic stations in 31 provinces of Iran. The reference evapotranspiration was compared with the FAO Penman–Monteith method. The results show that they are suitable for provinces of Iran (coefficient of determination (R 2) was more than 0.9900). The Valiantzas 1 (T, R s, RH, u) is more suitable for centre and south of Iran (9 provinces), and the Valiantzas 2 (T, R s, RH, u) is suitable for west, east, and north of Iran (22 provinces). The most precise method was the Valiantzas 1 (T, R s, RH, u) for ES. In addition, among limited data methods, the Valiantzas 2 (T, R s, RH) is the best method (18 provinces). Finally, a list of the best performances of each method was presented to use other regions according to values of temperature, relative humidity, solar radiation, and wind speed. The best weather conditions for use in Valiantzas’ methods are >24.2 MJ m−2 day−1, 16–18 °C, 40–50 %, and 1.50–2.50 m s−1 for solar radiation, temperature, relative humidity, and wind speed, respectively. Results are also useful for selecting the best model when researchers must apply these models on the basis of the available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen R, Tasumi M, Morse A, Trezza R, Wright J, Bastiaanssen W, Kramber W, Lorite I, Robison C (2007) Satellite-based energy balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—applications. J Irrig Drain Eng 133(4):395–406

    Article  Google Scholar 

  • Allen RG, Pereira LS, Howell TA, Jensen ME (2011) Evapotranspiration information reporting: I. Factors governing measurement preciseness. Agr Water Manag 98(6):899–920

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage. Paper no. 56. FAO, Rome

  • Banihabib ME, Valipour M, Behbahani SMR (2012) Comparison of autoregressive static and artificial dynamic neural network for the forecasting of monthly inflow of Dez reservoir. J Environ Sci Technol 13(4):1–14, http://jest.srbiau.ac.ir/?_action=articleInfo&article=84

    Google Scholar 

  • Chiew FHS, Kamaladasa NN, Malano HM, McMahon TA (1995) Penman-Monteith, FAO-24 the reference crop evapotranspiration and class-A pan data in Australia. Agr Water Manag 28(1):9–21

    Article  Google Scholar 

  • Estevez J, Gavilan P, Berengena J (2009) Sensitivity analysis of a Penman–Monteith type equation to estimate reference evapotranspiration in southern Spain. Hydrol Process 23:3342–3353

    Article  Google Scholar 

  • Hargreaves G (1989) Preciseness of estimated reference crop evapotranspiration. J Irrig Drain Eng 115(6):1000–1007

    Article  Google Scholar 

  • Hart QJ, Brugnach M, Temesgen B, Rueda C, Ustin SL, Frame K (2009) Daily reference evapotranspiration for California using satellite imagery and weather station measurement interpolation. Civil Eng Environ Sys 26(1):19–33

    Article  Google Scholar 

  • Jakimavicius D, Kriauciuniene J, Gailiusis B, Sarauskiene D (2013) Assessment of uncertainty in estimating the evaporation from the Curonian Lagoon. BALTICA 26(2):177–186

    Article  Google Scholar 

  • Kisi O (2007) Evapotranspiration modelling from climatic data using a neural computing technique. Hydrol Process 21:1925–1934

    Article  Google Scholar 

  • Kisi O (2011) Evapotranspiration modeling using a wavelet regression model. Irrig Sci 29(3):241–252

    Google Scholar 

  • Kisi O (2014) Comparison of different empirical methods for estimating daily reference evapotranspiration in Mediterranean climate. J Irrig Drain Eng. doi:10.1061/(ASCE)IR.1943-4774.0000664

    Google Scholar 

  • Lewis T, Lamoureux SF (2010) Twenty-first century discharge and sediment yield predictions in a small high Arctic watershed. Global Planet Change 71(1–2):27–41

    Article  Google Scholar 

  • Ley T, Straw D, Hill R (2009) ASCE standardized Penman-Monteith alfalfa reference ET and crop ET estimates for Arkansas River Compact compliance in Colorado. World Environ Water Resour Congr 1–14

  • MacDonald RJ, Byrne JM, Kienzle SW (2009) A physically based daily hydrometeorological model for complex mountain terrain. J Hydrometeorol 10(6):1430–1446

    Article  Google Scholar 

  • Moeletsi ME, Walker S, Hamandawana H (2013) Comparison of the Hargreaves and Samani equation and the Thornthwaite equation for estimating dekadal evapotranspiration in the Free State Province, South Africa. Phys Chem Earth 66:4–15

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92

    Article  Google Scholar 

  • Rahimi S, Gholami Sefidkouhi MA, Raeini-Sarjaz M, Valipour M (2014) Estimation of actual evapotranspiration by using MODIS images (a case study: Tajan catchment). Arch Agron Soil Sci. doi:10.1080/03650340.2014.944904

    Google Scholar 

  • Rimmer A, Samuels R, Lechinsky Y (2009) A comprehensive study across methods and time scales to estimate surface fluxes from Lake Kinneret, Israel. J Hydrol 379(1–2):181–192

    Article  Google Scholar 

  • Sahoo B, Walling I, Deka B, Bhatt B (2012) Standardization of reference evapotranspiration models for a subhumid valley rangeland in the Eastern Himalayas. J Irrig Drain Eng 138(10):880–895

    Article  Google Scholar 

  • Schrader F, Durner W, Fank J, Gebler S, Putz T, Hannes M, Wollschlager U (2013) Estimating precipitation and actual evapotranspiration from precision lysimeter measurements. Procedia Environ Sci 19:543–552

    Article  Google Scholar 

  • Steinman BA, Rosenmeier MF, Abbott MB, Bain DJ (2010) The isotopic and hydrologic response of small, closed-basin lakes to climate forcing from predictive models: application to paleoclimate studies in the upper Columbia River basin. Limnol Oceanogr 55(6):2231–2245

    Google Scholar 

  • Tian F, Qiu G, Yang Y, Lu Y, Xiong Y (2013) Estimation of evapotranspiration and its partition based on an extended three-temperature model and MODIS products. J Hydrol 498:210–220

    Article  Google Scholar 

  • Tian H, Wen J, Wang CH, Liu R, Lu DR (2012) Effect of pixel scale on evapotranspiration estimation by remote sensing over oasis areas in north-western China. Environ Earth Sci 67(8):2301–2313

    Article  Google Scholar 

  • Turc L (1961) Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Ann Agron 12:13–49

    Google Scholar 

  • Valiantzas JD (2006) Simplified versions for the Penman evaporation equation using routine weather data. J Hydrol 331(3):690–702

    Article  Google Scholar 

  • Valiantzas JD (2013a) Simple ET0 forms of Penman’s equation without wind and/or humidity data. I: theoretical development. J Irrig Drain Eng 139(1):1–8

    Article  Google Scholar 

  • Valiantzas JD (2013b) Simple ET0 forms of Penman’s equation without wind and/or humidity data. II: comparisons with reduced set-FAO and other methodologies. J Irrig Drain Eng 139(1):9–19

    Article  Google Scholar 

  • Valiantzas JD (2013c) Simplified reference evapotranspiration formula using an empirical impact factor for Penman’s aerodynamic term. J Hydrol Eng 18(1):108–114

    Article  Google Scholar 

  • Valiantzas JD (2013d) Simplified forms for the standardized FAO-56 Penman–Monteith reference evapotranspiration using limited weather data. J Hydrol 505:13–23

    Article  Google Scholar 

  • Valipour M (2012a) Critical areas of Iran for agriculture water management according to the annual rainfall. Eur J Sci Res 84(4):600–608

    Google Scholar 

  • Valipour M (2012b) Comparison of surface irrigation simulation models: full hydrodynamic, zero inertia, kinematic wave. J Agr Sci 4(12):68–74

    Google Scholar 

  • Valipour M (2012c) Sprinkle and trickle irrigation system design using tapered pipes for pressure loss adjusting. J Agr Sci 4(12):125–133

    Google Scholar 

  • Valipour M (2012d) Hydro-module determination for Vanaei village in Eslam Abad Gharb, Iran. ARPN J Agr Biol Sci 7(12):968–976

    Google Scholar 

  • Valipour M (2012e) Number of required observation data for rainfall forecasting according to the climate conditions. Am J Sci Res 74:79–86

    Google Scholar 

  • Valipour M (2012f) Scrutiny of pressure loss, friction slope, inflow velocity, velocity head, and Reynolds number in center pivot. Int J Adv Sci Technic Res 2(5):703–711

    Google Scholar 

  • Valipour M (2012g) Ability of Box-Jenkins models to estimate of reference potential evapotranspiration (a case study: Mehrabad Synoptic Station, Tehran, Iran). IOSR J Agri Veter Sci (IOSR-JAVS) 1(5):1–11

    Article  Google Scholar 

  • Valipour M (2012h) Effect of drainage parameters change on amount of drain discharge in subsurface drainage systems. IOSR J Agri Veter Sci (IOSR-JAVS) 1(4):10–18

    Article  Google Scholar 

  • Valipour M (2012i) A comparison between horizontal and vertical drainage systems (include pipe drainage, open ditch drainage, and pumped wells) in anisotropic soils. IOSR J Mech Civil Eng (IOSR-JMCE) 4(1):7–12

    Article  Google Scholar 

  • Valipour M (2012j) Determining possible optimal values of required flow, nozzle diameter, and wetted area for linear travelin g laterals. Int J Eng Sci (IJES) 1(1):37–43, http://www.theijes.com/papers/v1-i1/H011037043.pdf

    Google Scholar 

  • Valipour M (2013a) Necessity of irrigated and rainfed agriculture in the world. Irrig Drain Sys Eng S9:e001, http://www.omicsgroup.org/journals/2168-9768/pdfdownload.php?download=2168-9768-S9-e001.pdf&&aid=12800

    Google Scholar 

  • Valipour M (2013b) Evolution of irrigation-equipped areas as share of cultivated areas. Irrig Drain Sys Eng 2(1):e114. doi:10.4172/2168-9768.1000e114

    Google Scholar 

  • Valipour M (2013c) Need to update of irrigation and water resources information according to the progresses of agricultural knowledge. Agro Technol S10:e001. doi:10.4172/2168-9881.S10-e001

    Google Scholar 

  • Valipour M (2013d) Increasing irrigation efficiency by management strategies: cutback and surge irrigation. ARPN J Agr Biol Sci 8(1):35–43

    Google Scholar 

  • Valipour M (2013e) Use of surface water supply index to assessing of water resources management in Colorado and Oregon, US. Adv Agr Sci Eng Res 3(2):631–640

    Google Scholar 

  • Valipour M (2013f) Estimation of surface water supply index using snow water equivalent. Adv Agr Sci Eng Res 3(1):587–602

    Google Scholar 

  • Valipour M (2013g) Scrutiny of inflow to the drains applicable for improvement of soil environmental conditions. In: The 1st international conference on environmental crises and its solutions, Kish Island, Iran

  • Valipour M (2013h) Comparison of different drainage systems usable for solution of environmental crises in soil. In: The 1st international conference on environmental crises and its solutions, Kish Island, Iran.

  • Valipour M (2014a) Application of new mass transfer formulae for computation of evapotranspiration. J Appl Water Eng Res 2(1):33–46

    Article  Google Scholar 

  • Valipour M (2014b) Importance of solar radiation, temperature, relative humidity, and wind speed for calculation of reference evapotranspiration. Arch Agron Soil Sci. doi:10.1080/03650340.2014.925107

    Google Scholar 

  • Valipour M (2014c) Temperature analysis of reference evapotranspiration models. Meteorol Appl. doi:10.1002/met.1465

    Google Scholar 

  • Valipour M (2014d) Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods. Water Resour Manag. doi:10.1007/s11269-014-0741-9

  • Valipour M (2014e) Assessment of humidity-based equations to estimate potential evapotranspiration. Acta Adv Agr Sci. Accepted

  • Valipour M (2014f) Study of different climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations. Arch Agron Soil Sci. doi:10.1080/03650340.2014.941823

    Google Scholar 

  • Valipour M (2014g) Drainage, waterlogging, and salinity. Arch Agron Soil Sci 60(12):1625–1640

    Google Scholar 

  • Valipour M (2014h) Future of agricultural water management in Americas. J Agr Res 54(2):245–268, http://www.jar.com.pk/upload/1402783457_113_paper9.pdf

    Google Scholar 

  • Valipour M (2014i) Future of the area equipped for irrigation. Arch Agron Soil Sci 60(12):1641–1660

    Google Scholar 

  • Valipour M (2014j) Land use policy and agricultural water management of the previous half of century in Africa. Appl Water Sci. doi:10.1007/s13201-014-0199-1

    Google Scholar 

  • Valipour M (2014k) Handbook of water engineering problems. OMICS Group eBooks, Foster City, http://www.esciencecentral.org/ebooks/handbook-of-water-engineering-problems/pdf/handbook-of-water-engineering-problems.pdf

    Google Scholar 

  • Valipour M (2014l) Future of agricultural water management in Europe based on socioeconomic indices. Acta Adv Agr Sci 2(7):1–18, http://www.aaasjournal.com/index.php/17-vol02-issue07/48-future-of-agricultural-water-management-in-europe-based-on-socioeconomic-indices

    Google Scholar 

  • Valipour M (2014m) Analysis of potential evapotranspiration using limited weather data. Appl Water Sci. Accepted

  • Valipour M (2014n) Handbook of hydrologic engineering problems. OMICS Group eBooks, Foster City, http://www.esciencecentral.org/ebooks/handbook-of-hydrologic-engineering-problems/pdf/handbook-of-hydrologic-engineering-problems.pdf

    Google Scholar 

  • Valipour M (2014o) Comparative evaluation of radiation-based methods for estimation of reference evapotranspiration. J Hydrol Eng. doi:10.1061/(ASCE)HE.1943-5584.0001066

    Google Scholar 

  • Valipour M (2014p) Handbook of irrigation engineering problems. OMICS Group eBooks, Foster City, http://www.esciencecentral.org/ebooks/handbook-of-irrigation-engineering-problems/pdf/handbook-of-irrigation-engineering-problems.pdf

    Google Scholar 

  • Valipour M (2014q) Handbook of hydraulic engineering problems. OMICS Group eBooks, Foster City, http://www.esciencecentral.org/ebooks/handbook-of-hydraulic-engineering-problems/pdf/handbook-of-hydraulic-engineering-problems.pdf

    Google Scholar 

  • Valipour M (2014r) Pressure on renewable water resources by irrigation to 2060. Acta Adv Agr Sci 2(8):32–42

  • Valipour M (2014s) Prediction of irrigated agriculture in Asia Pacific using FAO indices. Acta Adv Agr Sci 2(9):40–53

  • Valipour M (2014t) Handbook of environmental engineering problems. OMICS Group eBooks, Foster City, http://www.esciencecentral.org/ebooks/handbook-of-environmental-engineering-problems/pdf/handbook-of-environmental-engineering-problems.pdf

    Google Scholar 

  • Valipour M (2014u) Handbook of drainage engineering problems. OMICS Group eBooks, Foster City, http://www.esciencecentral.org/ebooks/handbook-of-drainage-engineering-problems/pdf/handbook-of-drainage-engineering-problems.pdf

    Google Scholar 

  • Valipour M, Banihabib ME, Behbahani SMR (2012a) Monthly inflow forecasting using autoregressive artificial neural network. J Appl Sci 12(20):2139–2147

    Article  Google Scholar 

  • Valipour M, Banihabib ME, Behbahani SMR (2012b) Parameters estimate of autoregressive moving average and autoregressive integrated moving average models and compare their ability for inflow forecasting. J Math Stat 8(3):330–338

    Article  Google Scholar 

  • Valipour M, Mousavi SM, Valipour R, Rezaei E (2012c) Air, water, and soil pollution study in industrial units using environmental flow diagram. J Basic Appl Sci Res 2(12):12365–12372

    Google Scholar 

  • Valipour M, Mousavi SM, Valipour R, Rezaei E (2012d) SHCP: soil heat calculator program. IOSR J Appl Phys (IOSR-JAP) 2(3):44–50

    Article  Google Scholar 

  • Valipour M, Mousavi SM, Valipour R, Rezaei E (2013a) A new approach for environmental crises and its solutions by computer modeling. In: The 1st international conference on environmental crises and its solutions, Kish Island, Iran

  • Valipour M, Banihabib ME, Behbahani SMR (2013b) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441

    Article  Google Scholar 

  • Valipour M, Mousavi SM, Valipour R, Rezaei E (2013c) Deal with environmental challenges in civil and energy engineering projects using a new technology. J Civil Environ Eng 3(1):127. doi:10.4172/2165-784X.1000127

    Google Scholar 

  • Valipour M, Montazar AA (2012a) Optimize of all effective infiltration parameters in furrow irrigation using visual basic and genetic algorithm programming. Austral J Basic Appl Sci 6(6):132–137

    Google Scholar 

  • Valipour M, Montazar AA (2012b) Sensitive analysis of optimized infiltration parameters in SWDC model. Adv Environ Biol 6(9):2574–2581

    Google Scholar 

  • Valipour M, Montazar AA (2012c) An evaluation of SWDC and WinSRFR models to optimize of infiltration parameters in furrow irrigation. Am J Sci Res 69:128–142

    Google Scholar 

  • Valipour M, Ziatabar Ahmadi M, Raeini-Sarjaz M, Gholami Sefidkouhi MA, Shahnazari A, Fazlola R, Darzi-Naftchali A (2014) Agricultural water management in the world during past half century. Arch Agron Soil Sci. doi:10.1080/03650340.2014.944903

    Google Scholar 

  • Xu CY, Chen D (2005) Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrol Process 19:3717–3734

    Article  Google Scholar 

  • Xu CY, Singh VP (2000) Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrol Process 14(2):339–349

    Article  Google Scholar 

  • Xu CY, Singh VP, Chen YD, Chen D (2008) Evaporation and evapotranspiration. In: Singh VP (ed) Hydrology and hydraulics, 1st edn. Water Resources Pubns, USA, pp 229–276

    Google Scholar 

  • Xu J, Peng S, Ding J, Wei Q, Yu Y (2013) Evaluation and calibration of simple methods for daily reference evapotranspiration estimation in humid East China. Arch Agron Soil Sci 59(6):845–858

    Article  Google Scholar 

  • Zhai L, Feng Q, Li Q, Xu C (2010) Comparison and modification of equations for calculating evapotranspiration (ET) with data from Gansu Province, Northwest China. Irrig Drain 59:477–490

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Valipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valipour, M. Investigation of Valiantzas’ evapotranspiration equation in Iran. Theor Appl Climatol 121, 267–278 (2015). https://doi.org/10.1007/s00704-014-1240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1240-x

Keywords

Navigation