Skip to main content

Advertisement

Log in

Revisiting forest impact on atmospheric water vapor transport and precipitation

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Using a robust global precipitation database, we analyze coast-to-interior seasonal precipitation distributions over the world’s major forest regions. We find that the active functioning of boreal forests in summer is associated with an intense ocean-to-land moisture transport, which declines in winter when forest functioning is minimal. This seasonal switch manifests itself as a change in the exponential scale length of precipitation distribution, which exceeds 15 × 103 km in summer but decreases to (3–4) × 103 km in winter. In equatorial rainforests, which are photosynthetically active throughout the year, annual precipitation remains approximately constant, while the coefficient of variation of monthly precipitation significantly declines toward the continent interior. Precipitation over forest during the periods of active forest functioning is always higher than over the adjacent ocean. Such precipitation patterns support the biotic pump concept according to which forest cover drives the ocean-to-land atmospheric moisture transport on a continental scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Álvarez-Villa OD, Veléz JJ, Poveda G (2011) Improved long-term mean annual rainfall fields for Colombia. Int J Climatol 31:2194–2212. doi:10.1002/joc.2232

    Article  Google Scholar 

  • Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva Dias MAF (2004) Smoking rain clouds over the Amazon. Science 303:1337–1342. doi:10.1126/science.1092779

    Article  Google Scholar 

  • Angelini IM, Garstang M, Davis RE, Hayden B, Fitzjarrald DR, Legates DR, Greco S, Macko S, Connors V (2011) On the coupling between vegetation and the atmosphere. Theor Appl Climatol 105:243–261. doi:10.1007/s00704-010-0377-5

    Article  Google Scholar 

  • Anyamba A, Tucker CJ, Eastman JR (2001) NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. Int J Remote Sens 22:1847–1859. doi:10.1080/0143116001002915

    Article  Google Scholar 

  • Baker IT, Prihodko L, Denning AS, Goulden M, Miller S, da Rocha HR (2008) Seasonal drought stress in the Amazon: reconciling models and observations. J Geophys Res 113:G00B01. doi:10.1029/2007JG000644

    Article  Google Scholar 

  • Beresford-Jones D, Arce Torres S, Whaley O, Chepstow-Lusty A (2009) The role of Prosopis in ecological and landscape change in the Samaca Basin, lower Inca Valley, South Coast Peru from the Early Horizon to the Late Intermediate Period. Lat Am Antiq 20:303–332

    Google Scholar 

  • Bretherton CS, Peters ME, Back LE (2004) Relationships between water vapor path and precipitation over the tropical oceans. J Clim 17:1517–1528. doi:10.1175/1520-0442(2004)017<1517%3ARBWVPA>2.0.CO%3B2

    Article  Google Scholar 

  • Cao S, Li C, Shankman D, Wang C, Wang X, Zhang H (2010) Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth Sci Rev 104:240–245. doi:10.1016/j.earscirev.2010.11.002

    Article  Google Scholar 

  • Chikoore H, Jury MR (2010) Intraseasonal variability of satellite-derived rainfall and vegetation over Southern Africa. Earth Interact 14:1–26. doi:10.1175/2010EI267.1

    Article  Google Scholar 

  • Cook BI, Seager R, Miller RL (2011) Atmospheric circulation anomalies during two persistent North American droughts: 1932–1939 and 1948–1957. Clim Dyn 36:2339–2355. doi:10.1007/s00382-010-0807-1

    Article  Google Scholar 

  • Cuartas LA, Tomasella J, Nobre AD, Hodnett MG, Waterloo MJ, Múnera JC (2007) Interception water-partitioning dynamics for a pristine rainforest in Central Amazonia: marked differences between normal and dry years. Agr Forest Meteorol 145:69–83. doi:10.1016/j.agrformet.2007.04.008

    Article  Google Scholar 

  • Davidson E, Lefebvre PA, Brando PM, Ray DM, Trumbore SE, Solorzano LA, Ferreira JN, Bustamante MMC, Nepstad DC (2011) Carbon inputs and water uptake in deep soils of an eastern Amazon forest. Forest Sci 57:51–58

    Google Scholar 

  • Dubreuil V, Debortoli N, Funatsu B, Nédélec V, Durieux L (2012) Impact of land-cover change in the Southern Amazonia climate: a case study for the region of Alta Floresta, Mato Grosso, Brazil. Environ Monit Assess 184:877–891. doi:10.1007/s10661-011-2006-x

    Article  Google Scholar 

  • Ellison D, Futter MN, Bishop K (2012) On the forest cover–water yield debate: from demand- to supply-side thinking. Global Change Biol 18:806–820. doi:10.1111/j.1365-2486.2011.02589.x

    Article  Google Scholar 

  • Espinoza JC, Guyot JL, Ronchail J, Cochonneau G, Naziano F, Fraizy P, Labat D, de Oliveira E, Ordoñez JJ, Vauchel P (2009a) Contrasting regional discharge evolutions in the Amazon basin (1974–2004). J Hydrol 375:297–311. doi:10.1016/j.jhydrol.2009.03.004

    Article  Google Scholar 

  • Espinoza JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, de Oliveira E, Pombosa R, Vauchel P (2009b) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29:1574–1594. doi:10.1002/joc.1791

    Article  Google Scholar 

  • Fitzjarrald DR, Sakai RK, Moraes OLL, Cosme de Oliveira R, Acevedo OC, Czikowsky MJ, Beldini T (2008) Spatial and temporal rainfall variability near the Amazon–Tapajós confluence. J Geophys Res 113:G00B11. doi:10.1029/2007JG000596

    Article  Google Scholar 

  • Friedl MA, Strahler AH, Hodges J (2010) ISLSCP II MODIS (collection 4) IGBP land cover, 2000–2001. In: Hall FG, Collatz G, Meeson B, Los S, Brown de Colstoun E, Landis D (eds) ISLSCP initiative II collection. Data set. Available on-line (http://daac.ornl.gov/) from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee. doi:10.3334/ORNLDAAC/968

  • Ghazoul J, Sheil D (2010) Tropical rain forest ecology, diversity and conservation. Oxford University Press, Oxford

    Google Scholar 

  • Goessling HF, Reick CH (2011) What do moisture recycling estimates tell us? exploring the extreme case of non-evaporating continents. Hydrol Earth Syst Sci 15:3217–3235. doi:10.5194/hess-15-3217-2011

    Article  Google Scholar 

  • Gorshkov VG, Makarieva AM, Gorshkov VV (2004) Revising the fundamentals of ecological knowledge: the biota-environment interaction. Ecol Complex 1:17–36. Abstract. PDF (0.3 Mb). doi:10.1016/j.ecocom.2003.09.002

    Google Scholar 

  • Heiblum RH, Koren I, Altaratz O (2011) Analyzing coastal precipitation using TRMM observations. Atmos Chem Phys 11:13201–13217. doi:10.5194/acp-11-13201-2011

    Article  Google Scholar 

  • Huete AR, Didan K, Shimabukuro YE, Ratana P, Saleska SR, Hutyra LR, Yang W, Nemani RR, Myneni R (2006) Amazon rainforests green-up with sunlight in dry season. Geophys Res Lett 33:L06405. doi:10.1029/2005GL025583

    Article  Google Scholar 

  • Keys PW, van der Ent RJ, Gordon LJ, Hoff H, Nikoli R, Savenije HHG (2012) Analyzing precipitation sheds to understand the vulnerability of rainfall dependent regions. Biogeosciences 9:733–746. doi:10.5194/bg-9-733-2012

    Article  Google Scholar 

  • Lane PNJ, Best AE, Hickel K, Zhang L (2005) The response of flow duration curves to afforestation. J Hydrol 310:253–265. doi:10.1016/j.jhydrol.2005.01.006

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127. doi:10.1002/joc.3370100202

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG (2006) Interactive comment on “biotic pump of atmospheric moisture as driver of the hydrological cycle on land” by A. M. Makarieva and V. G. Gorshkov. Hydrol Earth Syst Discuss 3: S1705–S1712. http://www.hydrol-earth-syst-sci-discuss.net/3/S1705/2006/

  • Makarieva AM, Gorshkov VG (2007) Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth Syst Sci 11:1013–1033. doi:10.5194/hess-11-1013-2007

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG (2010) The biotic pump: condensation, atmospheric dynamics and climate. Int J Water 5:365–385. doi:10.1504/IJW.2010.038729

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG (2011) Radial profiles of velocity and pressure for condensation-induced hurricanes. Phys Lett A 375:1053–1058. doi:10.1016/j.physleta.2011.01.005

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Li B-L (2009) Precipitation on land versus distance from the ocean: evidence for a forest pump of atmospheric moisture. Ecol Complex 6:302–307. doi:10.1016/j.ecocom.2008.11.004

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Sheil D, Nobre AD, Li B-L (2010) Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmos Chem Phys Discuss 10:24015–24052. doi:10.5194/acpd-10-24015-2010

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Nefiodov AV (2011) Condensational theory of stationary tornadoes. Phys Lett A 375:2259–2261. doi:10.1016/j.physleta.2011.04.023

    Article  Google Scholar 

  • Marengo JA (2005) Characteristics and spatio-temporal variability of the Amazon River Basin Water Budget. Clim Dyn 24:11–22. doi:10.1007/s00382-004-0461-6

    Article  Google Scholar 

  • Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703. doi:10.1029/2011GL047436

    Article  Google Scholar 

  • McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore B III, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U (2001) Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land-use effects with four process-based ecosystem models. Global Biogeochem Cycles 15:183–206. doi:10.1029/2000GB001298

    Article  Google Scholar 

  • McVicar TR, Li LT, Van Niel TG, Zhang L, Li R, Yang QK, Zhang XP, Mu XM, Wen ZM, Liu WZ, Zhao YA, Liu ZH, Gao P (2007) Developing a decision support tool for China’s re-vegetation program: simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau. Forest Ecol Manage 251:65–81. doi:10.1016/j.foreco.2007.06.025

    Article  Google Scholar 

  • Millán H, Rodríguez J, Ghanbarian-Alavijeh B, Biondi R, Llerena G (2011) Temporal complexity of daily precipitation records from different atmospheric environments: Chaotic and Lévy stable parameters. Atmos Res 101:879–892. doi:10.1016/j.atmosres.2011.05.021

    Article  Google Scholar 

  • Murakami S (2009) A new paradigm of forest canopy interception science: the implication of a huge amount of evaporation during rainfall. In: Creighton JD, Roney PJ (eds) Forest canopies: forest production, ecosystem health and climate conditions. Nova, Hauppage, pp 1–28

    Google Scholar 

  • Myneni RB, Yang W, Nemani RR, Huete AR, Dickinson RE, Knyazikhin Y, Didan K, Fu R, Negrón Juárez RI, Saatchi SS, Hashimoto H, Ichii K, Shabanov NV, Tan B, Ratana P, Privette JL, Morisette JT, Vermote EF, Roy DP, Wolfe RE, Friedl MA, Running SW, Votava P, El-Saleous N, Devadiga S, Su Y, Salomonson VV (2007) Large seasonal swings in leaf area of Amazon rain-forests. Proc Natl Acad Sci 104:4820–4823. doi:10.1073/pnas.0611338104

    Article  Google Scholar 

  • Nadezhdina N, David TS, David JS, Ferreira MI, Dohnal M, Tesař M, Gartner K, Leitgeb E, Nadezhdin V, Cermak J, Jimenez MS, Morales D (2010) Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrology 3:431–444. doi:10.1002/eco.148

    Article  Google Scholar 

  • Nepstad DC, Carvalho CJR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, da Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669. doi:10.1038/372666a0

    Article  Google Scholar 

  • Oglesby RJ, Sever TL, Saturno W, Erickson DJ III, Srikishen J (2010) Collapse of the Maya: could deforestation have contributed? J Geophys Res 115:D12106. doi:10.1029/2009JD011942

    Article  Google Scholar 

  • Paiva RCD, Buarque DC, Clarke RT, Collischonn W, Allasia DG (2011) Reduced precipitation over large water bodies in the Brazilian Amazon shown from TRMM data. Geophys Res Lett 38:L04406. doi:10.1029/2010GL045277

    Article  Google Scholar 

  • Poveda G, Salazar LF (2004) Annual and interannual (ENSO) variability of spatial scaling properties of a vegetation index (NDVI) in Amazonia. Remote Sens Environ 93:391–401. doi:10.1016/j.rse.2004.08.001

    Article  Google Scholar 

  • Poveda G, Álvarez DM, Rueda ÓA (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36:2233–2249. doi:10.1007/s00382-010-0931-y

    Article  Google Scholar 

  • Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, da Rocha HR, de Camargo PB, Crill P, Daube BC, de Freitas HC, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557. doi:10.1126/science.1091165

    Article  Google Scholar 

  • Satyamurty P, de Castro AA, Tota J, da Silva Gularte LE, Manzi AO (2010) Rainfall trends in the Brazilian Amazon in the past eight decades. Theor Appl Climatol 99:139–148. doi:10.1007/s00704-009-0133-x

    Article  Google Scholar 

  • Savenije HHG (1995) New definitions for moisture recycling and the relationship with land-use change in the Sahel. J Hydrol 167:57–78. doi:10.1016/0022-1694(94)02632-L

    Article  Google Scholar 

  • Savenije HHG (1996) The runoff coefficient as the key to moisture recycling. J Hydrol 76:219–225. doi:10.1016/0022-1694(95)02776-9

    Article  Google Scholar 

  • Savenije HHG (2004) The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol Processes 18:1507–1511. doi:10.1002/hyp.5563

    Article  Google Scholar 

  • Sheil D, Murdiyarso D (2009) How forests attract their rain: an examination of a new hypothesis. Bioscience 59:341–347. doi:10.1525/bio.2009.59.4.12

    Article  Google Scholar 

  • Tian Y, Peters-Lidard CD (2007) Systematic anomalies over inland water bodies in satellite-based precipitation estimates. Geophys Res Lett 34:L14403. doi:10.1029/2007GL030787

    Article  Google Scholar 

  • van der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric moisture over continents. Water Resour Res 46:W09525. doi:10.1029/2010WR009127

    Article  Google Scholar 

  • Verdin KL (2011) ISLSCP II HYDRO1k elevation-derived products. In: Hall FG, Collatz G, Meeson B, Los S, Brown de Colstoun E, Landis D (eds) ISLSCP initiative II collection. Data set. Available on-line (http://daac.ornl.gov/) from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge. doi:10.3334/ORNLDAAC/1007

  • Williams E et al (2002) Contrasting convective regimes over the Amazon: implications for cloud electrification. J Geophys Res 107(D20):8082. doi:10.1029/2001JD000380

    Article  Google Scholar 

  • Williams PA, Funk C, Michaelsen J, Rauscher SA, Robertson I, Wils THG, Koprowski M, Eshetu Z, Loader NJ (2011) Recent summer precipitation trends in the Greater Horn of Africa and the emerging role of Indian Ocean Sea surface temperature. Clim Dyn. doi:10.1007/s00382-011-1222-y

  • Wu Y-P, Shen Y-P, Li BL (2012) Possible physical mechanism of water vapor transport over Tarim River Basin. Ecol Complex 9:63–70. doi:10.1016/j.ecocom.2011.12.002

    Article  Google Scholar 

  • Yin X, Gruber A (2010) Validation of the abrupt change in GPCP precipitation in the Congo River Basin. Int J Climatol 30:110–119. doi:10.1002/joc.1875

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Angelini et al. team of authors who readily provided us with the requested information on the geography of the precipitation transects they studied. We thank the reviewers for their helpful comments on the manuscript and also Peter Bunyard, Jan Čermák, Andrei Nefiodov, Antonio Nobre, Jan Pokorny, and Douglas Sheil for numerous and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastassia M. Makarieva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1621 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarieva, A.M., Gorshkov, V.G. & Li, BL. Revisiting forest impact on atmospheric water vapor transport and precipitation. Theor Appl Climatol 111, 79–96 (2013). https://doi.org/10.1007/s00704-012-0643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0643-9

Keywords

Navigation