Skip to main content
Log in

Statistical distributions of daily rainfall regime in Europe for the period 1951–2000

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Amount and time distributions, X and Y, of daily rain amounts in Europe along the second half of 20th century have been studied from 267 rain gauge records. Different geographical features, such as latitude, vicinity to Mediterranean Sea or the Atlantic Ocean or altitude above sea level, cause the averages of daily rain and annual number of rainy days to vary within a wide range. The largest daily percentiles of amount and time distributions are reached at latitudes south of 50°N and in southwestern Norway. The amount of distribution, X, is well-modelled by the exponential function, with parameters derived from probability graphs. Time distributions, Y, are well-fitted by Pearson type III (Gamma) and Weibull models, their parameters being estimated by L-moments. Normalised rainfall curves (NRC) have been modelled by the analytical function \( X = Y \cdot \exp \left\{ { - b{{\left( {1 - Y} \right)}^c}} \right\} \), with b and c parameters depicting spatial variability. Alternatively, the beta distribution also describes quite well the empirical NRCs, with parameters estimated by statistical moments. The coordinates of the average daily amount (X r , Y r ) and the values of X* and Y*, which are defined as the fraction of rain amount for a half of rainy days and the fraction of number of rainy days accounting for a half of total rain amount, respectively, depict very similar spatial distribution throughout Europe. In fact, X r and X* keep a linear relationship, as well as Y r and Y*, the four coordinates depending on the coefficient of variation of daily rain amounts. A similar linear relationship is found for the pair (X*, Y*). Finally, the Average Linkage algorithm applied to the coordinates X r , Y r , X* and Y* characterising every one of the 267 NRCs permits to group the rain gauges into several spatial clusters, each of them related to a different normalised daily pluviometric regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ahrens CD (1994) Meteorology today. West Publishing Company, St. Paul/Minneapolis, p 592

    Google Scholar 

  • Alijani B, O’Brien J, Yarnal B (2008) Spatial analysis of precipitation intensity and concentration in Iran. Theor Appl Climatol 94:107–124

    Article  Google Scholar 

  • Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1484

    Article  Google Scholar 

  • Ananthakrishnan R, Rajan CK (1987) Some features of the south-west monsoon rainfall of Cochin and Minicoy. J Climatol 7:355–372

    Article  Google Scholar 

  • Ananthakrishnan R, Soman MK (1989) Statistical distribution of daily rainfall and its association with the coefficients of variation of rainfall series. Int J Climatol 9:485–500

    Article  Google Scholar 

  • Benjamin JR, Cornell A (1970) Probability, statistics and decision for civil engineering. McGraw-Hill, New York

    Google Scholar 

  • Burgueño A, Serra C, Lana X (2004) Monthly and annual statistical distributions of the daily rainfall at the Fabra Observatory (Barcelona, NE Spain) for the years 1917–1999. Theor Appl Climatol 77:57–75

    Article  Google Scholar 

  • Burgueño A, Martínez MD, Lana X, Serra C (2005) Statistical distributions of the daily rainfall regime in Catalonia (northeastern Spain) for the years 1950–2000. Int J Climatol 25:1381–1403

    Article  Google Scholar 

  • Dai A (2001) Global precipitation and thunderstorm frequencies. Part I: seasonal and interannual variations. J Climate 14:1092–1111

    Article  Google Scholar 

  • Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PF, Hennessy KJ, Suppiah R, Page CM, Wibig J, Fortuniak K, Razuvaev VN, Douglas A, Fǿrland E, Zhai PM (1999) Changes in the probability of heavy precipitation: important indicators of climate change. Clim Change 42:243–283

    Article  Google Scholar 

  • Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Climate 18:1326–1350

    Article  Google Scholar 

  • Guilló AM, Puigcerver M (1970) Sobre las contribuciones relativas de las precipitaciones local y generalizada a la precipitación total en Cataluña. Rev Geofís 29:205–216

    Google Scholar 

  • Harrison MSJ (1983) Rain day frequency and mean daily rainfall intensity as determinants of total rainfall over the eastern Orange Free State. J Climatol 3:35–45

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  • Hegerl GC, Zwiers FW, Stott PA, Kharin VV (2004) Detectability of anthropogenic changes in annual temperature and precipitation extremes. J Climate 17:3683–3700

    Article  Google Scholar 

  • Hofstra N, Haylock M, New M, Jones P, Frei C (2008) Comparison of six methods for the interpolation of daily, European climate data. J Geophys Res 113:D21110. doi:10.1029/2008JD010100

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis. Cambridge University Press, Cambridge, p 224

    Book  Google Scholar 

  • Jolliffe IT, Hope PB (1996) Representation of daily rainfall distributions using normalised rainfall curves. Int J Climatol 16:1157–1163

    Article  Google Scholar 

  • Kalkstein LS, Tan G, Skinlov JA (1987) An evaluation of three clustering procedures for use in synoptic climatological classifications. J Clim Appl Meteorol 26:717–730

    Article  Google Scholar 

  • Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Wetermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, Van Engelen AFV, Fǿrland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, López JA, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453

    Article  Google Scholar 

  • Klok EJ, Klein Tank AMG (2009) Updated and extended European dataset of daily climate observations. Int J Climatol 29:1182–1191

    Article  Google Scholar 

  • Kundzewicz ZW, Radziejewski M, Pińskwar I (2006) Precipitation extremes in the changing climate of Europe. Clim Res 31:51–58

    Article  Google Scholar 

  • Lana X, Burgueño A (1998) Spatial and temporal characteristics of annual extreme droughts in Catalonia (NE Spain). Int J Climatol 18:93–110

    Article  Google Scholar 

  • Lana X, Martínez MD, Burgueño A, Serra C, Martín-Vide J, Gómez L (2008) Spatial and temporal patterns of dry spell lengths in the Iberian Peninsula for the second half of the twentieth century. Theor Appl Climatol 91:99–116

    Article  Google Scholar 

  • Legates DR (1995) Global and terrestrial precipitation: a comparative assessment of existing climatologies. Int J Climatol 15:237–258

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127

    Article  Google Scholar 

  • Martin LA (1964) An investigation of the rainfall distribution for stations in north and Central America”, in Research on Tropical Rainfall Patterns and Associated Meso-scale Systems. Department of Meteorology, Texas A & M University, 1-55

  • Martín-Vide J (2004) Spatial distribution of a daily precipitation concentration index in Peninsular Spain. Int J Climatol 24:959–971

    Article  Google Scholar 

  • Olascoaga MJ (1950) Some aspects of Argentina rainfall. Tellus 2:312–318

    Article  Google Scholar 

  • Petty GW (1995) Frequencies and characteristics of global oceanic precipitation from shipboard present-weather reports. Bull Amer Meteorol Soc 76:1593–1616

    Article  Google Scholar 

  • Rai Sircar NC (1955) Some aspects of monsoon rainfall in India. J Meteorol Geophys 6:217–224

    Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier HEM, Samuelsson P, Willén U (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31

    Article  Google Scholar 

  • Riehl H (1979) Climate and weather in the tropics. Academic Press, London, pp 106–114

    Google Scholar 

  • Soman MK, Krishna Kumar K (1990) Some aspects of daily rainfall distribution over India during the south-west monsoon season. Int J Climatol 10:299–311

    Article  Google Scholar 

  • Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Climate 19:916–934

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Amer Meteorol Soc, 1205–1217

  • Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring. Science 317:233–235

    Article  Google Scholar 

  • Wexler RL (1967) Annual versus daily rainfall: southeast Asia. In: Proceedings of technical exchange conference, 4-7 April 1967, AWS Technical Report 196, 226-242

  • Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–692

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteor Soc 78:2539–2558

    Article  Google Scholar 

  • Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influences on twentieth-century precipitation trends. Nature 448:461–465

    Article  Google Scholar 

  • Zolina O, Kapala A, Simmer C, Gulev SK (2004) Analysis of extreme precipitation over Europe from different reanalyses: a comparative assessment. Global Planet Change 44:129–161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Lana.

Appendix

Appendix

Theoretical distributions applied to the different random variables studied (Benjamin and Cornell 1970; Hosking and Wallis 1997).

  1. (a)

    Exponential distribution

$$ F\left( {x;{{\lambda }}} \right) = 1 - \exp \left[ { - {{\lambda }}\left( {x - {{\varepsilon }}} \right)} \right]\quad \quad \quad x \geqslant {{\varepsilon }}\,;\;{{\lambda }} > 0 $$
(A.1)
  1. (b)

    Pearson type III (Gamma) distribution

$$ {{F}}\,\left( {x;{{\alpha }},{{\beta }},{{\xi }}} \right) = {{G}}\,\left( {{{\alpha }},\frac{{x - {{\xi }}}}{{{\beta }}}} \right)/\Gamma \left( {{\alpha }} \right)\quad \quad x\, \geqslant {{\xi }};\;{{\alpha }},{{\beta }}\, > \,0 $$
(A.2)

where

$$ G\left( {\alpha, \;x} \right) = \int_0^x {\,{t^{\alpha - 1}}\,{e^{ - t}}\,dt} $$
(A.3)

And Γ(·) denotes the gamma function

  1. (c)

    Weibull distribution

$$ F\left( {x;k,u,\varepsilon } \right) = 1 - \exp \left[ { - {{\left( {\frac{{x - \varepsilon }}{{u - \varepsilon }}} \right)}^k}} \right]\quad \quad \quad x \geqslant \varepsilon; \;u,k > 0 $$
(A.4)
  1. (d)

    Beta type I distribution

$$ F\left( {x;\alpha, \beta } \right) = \frac{{\Gamma \left( {\alpha + \beta } \right)}}{{\Gamma \left( \alpha \right)\Gamma \left( \beta \right)}}\int_0^x {{x^{\alpha - 1}}{{\left( {1 - x} \right)}^{\beta - 1}}dx\quad \quad \quad 0 < x < 1;\quad \alpha, \;\beta > 0} \quad $$
(A.5)

where Γ(·) again denotes the gamma function

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgueño, A., Martínez, M.D., Serra, C. et al. Statistical distributions of daily rainfall regime in Europe for the period 1951–2000. Theor Appl Climatol 102, 213–226 (2010). https://doi.org/10.1007/s00704-010-0251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-010-0251-5

Keywords

Navigation