Skip to main content

Advertisement

Log in

Direct observations of shortwave aerosol radiative forcing at surface and its diurnal variation during the Asian dry season at southwest Indian peninsula

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The Arabian Sea witnesses consistent occurrence of a large-scale aerosol plume transported by the northerlies from the Asian region during the dry season (December–April). This paper presents direct observations of the diurnal variation (and dependence on solar zenith angle, SZA) of instantaneous aerosol direct radiative forcing efficiency (IADRFE) and aerosol direct radiative forcing (ADRF) at surface during the period from December to March of 2010–2013 at Thiruvananthapuram (8.5°N, 77°E), an Indian peninsular station adjoining the Arabian Sea coast, which resides well within this aerosol plume. Magnitude of the IADRFE increases with SZA from −75 ± 20 W m−2 τ −1500 at SZA of ~80° to attain a peak value of −170 ± 30 W m−2 τ −1500 at SZA ~60° in March (~3 h before and after the local noon). Absolute magnitudes and SZA dependence of the observed seasonal mean IADRFE are in agreement (within 16 % of the absolute magnitudes) with those estimated using radiation transfer computations employing an aerosol model with visible band single-scattering albedo of ~0.90 ± 0.03. Observed values of the diurnal mean aerosol radiative forcing efficiency (ADRFE) averaged during the season (December–March) vary between −71 and −76.5 W m−2 τ −1500 , which is in agreement with the model estimate of −71 W m−2 τ −1500 . The present observations show that the seasonal mean ADRF at surface (−25 to −28 W m−2) is about 10 % of the diurnal mean downwelling shortwave flux reaching the surface (in the absence of aerosols) during dry season at this location, indicating the major role of aerosols in regulating surface energetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Babu SS, Moorthy KK (2002) Aerosol black carbon over a tropical coastal station in India. Geophys Res Lett 29(23):2098. doi:10.1029/2002GL015662

    Article  Google Scholar 

  • Babu SS, Moorthy KK, Satheesh SK (2004) Aerosol black carbon over Arabian Sea during intermonsoon and summer monsoon seasons. Geophys Res Lett. doi:10.1029/2003GL018716

    Google Scholar 

  • Babu SS, Moorthy KK, Satheesh SK (2007) Temporal heterogeneity in aerosol characteristics and the resulting radiative impacts at a tropical coastal station. Part 2: Direct short wave radiative forcing. Ann Geophys 25(11):2309–2320. doi:10.5194/angeo-25-2309-2007. http://www.ann-geophys.net/25/2309/2007/

  • Behrendt A, Pal S, Wulfmeyer V, Valdebenito AM, Lammel G (2011) A novel approach for the characterisation of transport and optical properties of aerosol particles near sources. Part I: Measurement of particle backscatter coefficient maps with a scanning UV lidar. Atmos Environ 45:2795–2802

    Article  Google Scholar 

  • Bush BC, Valero FPJ (2003) Surface aerosol radiative forcing at Gosan during the ACE-Asia campaign. J Geophys Res Atmos 108(D23):8660. doi:10.1029/2002JD003233

    Article  Google Scholar 

  • Christopher SA, Wang J, Ji Q, Tsay S-C (2003) Estimation of diurnal shortwave dust aerosol radiative forcing during PRIDE. J Geophys Res Atmos 108(D19):8596. doi:10.1029/2002JD002787

    Article  Google Scholar 

  • Dey S, Tripathi SN (2008) Aerosol direct radiative effects over Kanpur in the Indo-Gangetic basin, northern India: long-term (2001–2005) observations and implications to regional climate. J Geophys Res 113:D04212. doi:10.1029/2007JD009029

    Google Scholar 

  • Di Biagio C, di Sarra A, Meloni D (2010) Large atmospheric short wave radiative forcing by Mediterranean aerosols derived from simultaneous ground-based and spaceborne observations and dependence on the aerosol type and single scattering albedo. Atmospheres, J Geophys Res. doi:10.1029/2009JD0126973

    Google Scholar 

  • Forster P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Franke K, Ansmann A, Muller D, Althausen D, Venkataraman C, Reddy MS, Wagner F, Scheele R (2003) Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean. J Geophys Res 108(D2):4059. doi:10.1029/2002JD002473

    Article  Google Scholar 

  • Fu Q, Thorsen T, Su J, Ge J, Huang J (2009) Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations. J Quant Spectrosc Radiat Transfer 110(14–16):1640–1653. doi:10.1016/j.jqsrt.2009.03.010

    Article  Google Scholar 

  • Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38(4):513–543. doi:10.1029/1999RG000078

    Article  Google Scholar 

  • Hess M, Koepke P, Schult I (1998) Optical Properties of Aerosols and Clouds: the Software Package OPAC. Bull Amer Meteor Soc 79:831–844. doi:10.1175/1520-0477(1998)079

    Article  Google Scholar 

  • Huang J, Minnis P, Yan H, Yi Y, Chen B, Zhang L, Ayers J (2010) Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements. Atmos Chem Phys 10(14):6863–6872. doi:10.5194/acp-10-6863-2010

    Article  Google Scholar 

  • Huang J, Wang T, Wang W, Li Z, Yan H (2014) Climate effects of dust aerosols over East Asian arid and semiarid regions. J Geophys Res Atmos 119:11398–11416. doi:10.1002/2014JD021796

    Article  Google Scholar 

  • Jayaraman A, Gadhavi H, Ganguly D, Misra A, Ramachandran S, Rajesh TA (2004) Spatial variations in aerosol characteristics and regional radiative forcing over India: measurements and modeling of 2004 road campaign experiment. Atmos Environ 40:6504–6515. doi:10.1016/j.atmosenv.2006.01.034

    Article  Google Scholar 

  • Kalapureddy M, Devara P (2008) Characterization of aerosols over oceanic regions around India during pre-monsoon 2006. Atmos Environ 42(28):6816–6827. doi:10.1016/j.atmosenv.2008.05.022

    Article  Google Scholar 

  • Kaskaoutis DG, Sinha PR, Vinoj V, Kosmopoulos PG, Tripathi SN, Misra A, Sharma M, Singh RP (2013) Aerosol properties and radiative forcing over Kanpur during severe aerosol loading conditions. Atmos Environ 79:7–19. doi:10.1016/j.atmosenv.2013.06.020

    Article  Google Scholar 

  • Kaufman YJ et al (1998) Smoke, Clouds, and Radiation-Brazil (SCAR-B). J Geophys Res Atmos 103(D24):31783–31808. doi:10.1029/98JD02281

    Article  Google Scholar 

  • Kim D-H, Sohn BJ, Nakajima T, Takamura T (2005) Aerosol radiative forcing over East Asia determined from ground-based solar radiation measurements. Atmospheres, J Geophys Res. doi:10.1029/2004JD0046784

    Google Scholar 

  • Kulkarni JR, Maheshkumar RS, Morwal SB, Padma Kumari B, Konwar M, Deshpande CG, Joshi RR, Bhalwankar RV, Pandithurai G, Safai PD, Narkhedkar SG, Dani KK, Nath A, Nair S, Sapre VV, Puranik PV, Kandalgaonkar SS, Mujumdar VR, Khaladkar RM, Vijaykumar R, Prabha TV, Goswami BN (2012) The Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX): overview and preliminary results. Curr Sci 102:413–425

    Google Scholar 

  • Lawrence MG, Lelieveld J (2010) Atmospheric pollutant outflow from southern Asia: a review. Atmos Chem Phys 10:11017–11096. doi:10.5194/acp-10-11017-2010

    Article  Google Scholar 

  • McClatchey RA, Fenn RW, Selby JEA, Volz FE, Garing JS (1972) Optical properties of the atmosphere. 3rd edn. Environmental research paper 411. Report No. AFCRL-72-0497. Air Force Cambridge Research Laboratories, Bedford, USA

  • McComiskey A, Schwartz SE, Schmid B, Guan H, Lewis ER, Ricchiazzi P, Ogren JA (2008) Direct aerosol forcing: calculation from observables and sensitivities to inputs. J Geophys Res Atmos. doi:10.1029/2007JD009170

    Google Scholar 

  • Meywerk J, Ramanathan V (2002) Influence of anthropogenic aerosols on the total and spectral irradiance at the sea surface during the Indian Ocean Experiment (INDOEX) 1999. J Geophys Res D19:8018. doi:10.1029/2000JD000022

    Article  Google Scholar 

  • Mishra MK, Rajeev K, Thampi BV, Parameswaran K, Nair AKM (2010) Micropulse Lidar observations of mineral dust layer in the lower troposphere over the southwest coast of Peninsular India during the Asian Summer Monsoon season. J Atmos Sol Terr Phys 72:1251–1259. doi:10.1016/j.jastp.2010.08.012

    Article  Google Scholar 

  • Mishra MK, Rajeev K, Thampi BV, Nair AKM (2013) Annual variations of the altitude distribution of aerosols and effect of long-range transport over the southwest Indian Peninsula. Atmos Environ 81:51–59. doi:10.1016/j.atmosenv.2013.08.066

    Article  Google Scholar 

  • Moorthy KK, Babu SS, Satheesh SK (2005) Aerosol characteristics and radiative impacts over the Arabian Sea during the intermonsoon season: results from ARMEX field campaign. J Atmos Sci 62:192–206. doi:10.1175/JAS-3378.1

    Article  Google Scholar 

  • Moorthy KK, Satheesh SK, Babu SS, Dutt CBS (2008) Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB): an overview. J Earth Sys Sci 117:243–262

    Article  Google Scholar 

  • Müller D, Franke K, Ansmann A, Althausen D, Wagner F (2003) Indo-Asian pollution during INDOEX: microphysical particle properties and single scattering albedo inferred from multiwavelength lidar observations. J Geophys Res. doi:10.1029/2003JD003538

    Google Scholar 

  • Nair SK, Parameswaran K, Rajeev K (2005) Seven-years satellite observations of the mean structure and variabilities in the regional aerosol distribution over the oceanic areas around the Indian subcontinent. Ann Geophys 23:2011–2030. doi:10.5194/angeo-23-2011-2005

    Article  Google Scholar 

  • Nair VS, Babu SS, Moorthy KK (2008) Aerosol characteristics in the marine atmospheric boundary layer over the Bay of Bengal and Arabian Sea during ICARB: spatial distribution and latitudinal and longitudinal gradients. J Geophys Res Atmos. doi:10.1029/2008JD009823

    Google Scholar 

  • Pal S, Devara PCS (2012) A wavelet-based spectral analysis of long-term time series of optical properties of aerosols obtained by lidar and radiometer measurements over an urban station in Western India. J Atmos Solar Terr Phys 84–85:75–87

    Article  Google Scholar 

  • Pal S, Lee TR, Phelps S, De Wekker SFJ (2014) Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site. Sci Total Environ 496:424–434. doi:10.1016/j.scitotenv.2014.07.067

    Article  Google Scholar 

  • Rajeev K, Ramanathan V (2001) Direct observations of clear-sky aerosol radiative forcing from space during the Indian Ocean experiment. J Geophys Res: Atmospheres 106(D15):17221–17235. doi:10.1029/2000JD900723

    Article  Google Scholar 

  • Rajeev K, Ramanathan V, Meywerk J (2000) Regional aerosol distribution and its long-range transport over the Indian Ocean. J Geophys Res: Atmospheres 105(D2):2029–2043. doi:10.1029/1999JD900414

    Article  Google Scholar 

  • Rajeev K, Parameswaran K, Nair SK, Meenu S (2008) Observational evidence for the radiative impact of Indonesian smoke in modulating the sea surface temperature of the equatorial Indian Ocean. Atmospheres, J Geophys Res. doi:10.1029/2007JD009611

    Google Scholar 

  • Rajeev K, Parameswaran K, Thampi BV, Mishra MK, Nair AKM, Meenu S (2010) Altitude distribution of aerosols over southeast Arabian sea coast during pre-monsoon season: elevated layers, long-range transport and atmospheric radiative heating. Atmos Environ 44(2122):2597–2604. doi:10.1016/j.atmosenv.2010.04.014

    Article  Google Scholar 

  • Ramachandran S, Rengarajan R, Jayaraman A, Sarin MM, Das SK (2006) Aerosol radiative forcing during clear, hazy, and foggy conditions over a continental polluted location in north India. Atmospheres, J Geophys Res. doi:10.1029/2006JD007142

    Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124. doi:10.1126/science.1064034

    Article  Google Scholar 

  • Ramanathan V, Ramana MV, Roberts G, Kim D, Corrigan C, Chung C, Winker D (2007) Warming trends in Asia amplified by brown cloud solar absorption. Nature 448:575–578. doi:10.1038/nature06019

    Article  Google Scholar 

  • Remer LA, Tanré D, Mattoo S, Chu DA, Martins JV, Li RR, Cichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973. doi:10.1175/JAS3385.1

    Article  Google Scholar 

  • Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) SBDART: a research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull Amer Meteor Soc 79:2101–2114. doi:10.1175/1520-0477(1998)079

    Article  Google Scholar 

  • Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Russell PB, Hobbs PV, Stowe LL (1999) Aerosol properties and radiative effects in the United States East Coast haze plume: an overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). J Geophys Res Atmos 104(D2):2213–2222

    Article  Google Scholar 

  • Saha A, Moorthy KK, Niranjan K (2005) Interannual variations of aerosol optical depth over coastal India: relation to synoptic meteorology. J Appl Meteor 44:1066–1077. doi:10.1175/JAM2256.1

    Article  Google Scholar 

  • Satheesh SK, Ramanathan V (2000) Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surface. Nature 405:60–63. doi:10.1038/35011039

    Article  Google Scholar 

  • Satheesh SK, Ramanathan V, Li-Jones X, Lobert JM, Podgorny IA, Prospero JM, Holben BN, Loeb NG (1999) A model for the natural and anthropogenic aerosols over the tropical Indian Ocean derived from Indian Ocean experiment data. J Geophys Res Atmos 104(D22):27421–27440. doi:10.1029/1999JD900478

    Article  Google Scholar 

  • Seinfeld J, Pandis S (1998) Atmospheric chemistry and physics: from air pollution to climate change. A Wiley inter science publication, Wiley. http://books.google.co.in/books?id=lK8PAQAAMAAJ

  • Su J, Huang J, Fu Q, Minnis P, Ge J, Bi J (2008) Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements. Atmos Chem Phys 8(10):2763–2771

    Article  Google Scholar 

  • Tahnk WR, Coakley JA (2002) Aerosol optical depth and direct radiative forcing for INDOEX derived from AVHRR: observations, January–March 1996–2000. Atmospheres, J Geophys Res. doi:10.1029/2000JD000183

    Google Scholar 

  • Thampi BV, Rajeev K, Parameswaran K, Mishra MK (2009) Spatial distribution of the Southeast Asian smoke plume over the Indian Ocean and its radiative heating in the atmosphere during the major fire event of 2006. Geophys Res Lett. doi:10.1029/2009GL039316

    Google Scholar 

  • Valdebenito AM, Pal S, Lammel G, Behrendt A, Wulfmeyer V (2011) A novel approach for the characterization of transport and optical properties of aerosol particles emitted from an animal facility. Part II: High-resolution chemistry transport model and its assessment using lidar measurements. Atmos Environ 45:2981–2990

    Article  Google Scholar 

  • Vinoj V, Rasch PJ, Wang H, Yoon J-H, Po-Lun Ma, Landu K, Singh B (2014) Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat Geosci. doi:10.1038/NGEO2107

    Google Scholar 

  • Welton EJ, Voss KJ, Quinn PK, Flatau PJ, Markowicz K, Campbell JR, Spinhirne JD, Gordon HR, Johnson JE (2002) Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro pulse lidars. J Geophys Res 107:8019. doi:10.1029/2000JD000038

    Article  Google Scholar 

  • Winker DM, Tackett JL, Getzewich BJ, Liu Z, Vaughan MA, Rogers RR (2013) The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos Chem Phys 13:3345–3361. doi:10.5194/acp-13-3345-2013

    Article  Google Scholar 

Download references

Acknowledgments

This study is part of the IGBP-NOBLE project. MODIS AOD data used in this paper were obtained from the Giovanni online data system, developed and maintained by the NASA GES DISC (http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=MODIS_DAILY_L3). MERRA data used in this study/project have been provided by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center through the NASA GES DISC online archive. Very useful suggestions given by the anonymous reviewers are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Mishra.

Additional information

Responsible Editor: S. Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, M.K., Rajeev, K. Direct observations of shortwave aerosol radiative forcing at surface and its diurnal variation during the Asian dry season at southwest Indian peninsula. Meteorol Atmos Phys 128, 477–489 (2016). https://doi.org/10.1007/s00703-015-0427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-015-0427-8

Keywords

Navigation