Skip to main content
Log in

Glutamatergic mechanisms in l-DOPA-induced dyskinesia and therapeutic implications

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Overactivation of the glutamatergic synapse leading to maladaptive synaptic plasticity in the basal ganglia is a well-demonstrated process involved in the onset of l-DOPA-induced dyskinesia (LID). Changes in glutamate release are paralleled by compensatory modifications of the expression and/or synaptic localization of both ionotropic and metabotropic glutamate receptors (mGluRs). Accordingly, compounds targeting N-methyl-d-aspartate glutamate receptors (NMDARs) and specific subtypes of metabotropic glutamate receptors (mGluR4 and mGluR5) have been tested both in preclinical and clinical studies. At present, amantadine, a low-affinity non-competitive NMDAR antagonist, represents the only recommended add-on agent with a moderate anti-dyskinetic activity. The present review describes recent advances in basic research, preclinical and early clinical studies in the attempt of identifying innovative strategies for an accurate modulation of both pre- and postsynaptic glutamate receptors to reduce the severity of LID. Even if a complete understanding of LID molecular bases is still lacking, several compounds demonstrated an anti-dyskinetic activity in preclinical and early clinical studies. These results indicate that modulation of the glutamatergic system remains one of the most promising pharmacological strategies in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amalric M (2015) Targeting metabotropic glutamate receptors (mGluRs) in Parkinson’s disease. Curr Opin Pharmacol 20:29–34. https://doi.org/10.1016/j.coph.2014.11.001

    Article  PubMed  CAS  Google Scholar 

  • Ba M, Kong M, Yang H, Ma G, Lu G, Chen S, Liu Z (2006) Changes in subcellular distribution and phosphorylation of GluR1 in lesioned striatum of 6-hydroxydopamine-lesioned and l-DOPA-treated rats. Neurochem Res 31(11):1337–1347

    Article  PubMed  CAS  Google Scholar 

  • Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WK, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E (2015) Pathophysiology of l-DOPA-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168. https://doi.org/10.1016/j.pneurobio.2015.07.002

    Article  PubMed  CAS  Google Scholar 

  • Bennouar KE, Uberti MA, Melon C, Bacolod MD, Jimenez HN, Cajina M, Kerkerian-Le Goff L, Doller D, Gubellini P (2013) Synergy between L-DOPA and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson’s disease treatment and dyskinesia. Neuropharmacology 66:158–169. https://doi.org/10.1016/j.neuropharm.2012.03.022

    Article  PubMed  CAS  Google Scholar 

  • Berg D, Godau J, Trenkwalder C, Eggert K, Csoti I, Storch A, Huber H, Morelli-Canelo M, Stamelou M, Ries V, Wolz M, Schneider C, Di Paolo T, Gasparini F, Hariry S, Vandemeulebroecke M, Abi-Saab W, Cooke K, Johns D, Gomez-Mancilla B (2011) AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov Disord 26(7):1243–1250. https://doi.org/10.1002/mds.23616

    Article  PubMed  Google Scholar 

  • Beurrier C, Lopez S, Révy D, Selvam C, Goudet C, Lhérondel M, Gubellini P, Kerkerian-LeGoff L, Acher F, Pin JP, Amalric M (2009) Electrophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB J 23(10):3619–3628. https://doi.org/10.1096/fj.09-131789

    Article  PubMed  CAS  Google Scholar 

  • Bezard E, Pioli EY, Li Q, Girard F, Mutel V, Keywood C, Tison F, Rascol O, Poli SM (2014) The mGluR5 negative allosteric modulator dipraglurant reduces dyskinesia in the MPTP macaque model. Mov Disord 29(8):1074–1079. https://doi.org/10.1002/mds.25920

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield C, O’Donnell P, French SJ, Totterdell S (2007) Cholinergic neurons of the adult rat striatum are immunoreactive for glutamatergic N-methyl-d-aspartate 2D but not N-methyl-d-aspartate 2C receptor subunits. Neuroscience 150(3):639–646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bogenpohl J, Galvan A, Hu X, Wichmann T, Smith Y (2013) Metabotropic glutamate receptor 4 in the basal ganglia of parkinsonian monkeys: ultrastructural localization and electrophysiological effects of activation in the striatopallidal complex. Neuropharmacology 66:242–252. https://doi.org/10.1016/j.neuropharm.2012.05.017

    Article  PubMed  CAS  Google Scholar 

  • Cahill E, Pascoli V, Trifilieff P, Savoldi D, Kappès V, Lüscher C, Caboche J, Vanhoutte P (2014) D1R/GluN1 complexes in the striatum integrate dopamine and glutamate signalling to control synaptic plasticity and cocaine-induced responses. Mol Psychiatry 19(12):1295–1304. https://doi.org/10.1038/mp.2014.73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calabresi P, Pisani A, Mercuri NB, Bernardi G (1992) Long-term Potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur J Neurosci 4(10):929–935

    Article  PubMed  Google Scholar 

  • Chen Y, Yang W, Li X, Li X, Yang H, Xu Z, Yu S (2015) α-Synuclein-induced internalization of NMDA receptors in hippocampal neurons is associated with reduced inward current and Ca(2 +) influx upon NMDA stimulation. Neuroscience 300:297–306

    Article  PubMed  CAS  Google Scholar 

  • Cheng F, Li X, Li Y, Wang C, Wang T, Liu G, Baskys A, Uéda K, Chan P, Yu S (2011) α-Synuclein promotes clathrin-mediated NMDA receptor endocytosis and attenuates NMDA-induced dopaminergic cell death. J Neurochem 119(4):815–825. https://doi.org/10.1111/j.1471-4159.2011.07460.x

    Article  PubMed  CAS  Google Scholar 

  • Conn PJ, Battaglia G, Marino MJ, Nicoletti F (2005) Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6:787–798. https://doi.org/10.1038/nrn1763

    Article  PubMed  CAS  Google Scholar 

  • Dekundy A, Pietraszek M, Schaefer D, Cenci MA, Danysz W (2006) Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson’s disease. Brain Res Bull 69(3):318–326

    Article  PubMed  CAS  Google Scholar 

  • Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67(2):294–307. https://doi.org/10.1016/j.neuron.2010.06.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diógenes MJ, Dias RB, Rombo DM, Vicente Miranda H, Maiolino F, Guerreiro P, Näsström T, Franquelim HG, Oliveira LM, Castanho MA, Lannfelt L, Bergström J, Ingelsson M, Quintas A, Sebastião AM, Lopes LV, Outeiro TF (2012) Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci 32(34):11750–11762. https://doi.org/10.1523/JNEUROSCI.0234-12.2012

    Article  PubMed  CAS  Google Scholar 

  • Dunah AW, Standaert DG (2001) Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 21(15):5546–5558

    Article  PubMed  CAS  Google Scholar 

  • Dunah AW, Wang Y, Yasuda RP, Kameyama K, Huganir RL, Wolfe BB, Standaert DG (2000) Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-d-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Mol Pharmacol 57(2):342–352

    PubMed  CAS  Google Scholar 

  • Eggert K, Squillacote D, Barone P, Dodel R, Katzenschlager R, Emre M, Lees AJ, Rascol O, Poewe W, Tolosa E, Trenkwalder C, Onofrj M, Stocchi F, Nappi G, Kostic V, Potic J, Ruzicka E, Oertel W, German Competence Network on Parkinson’s Disease (2010) Safety and efficacy of perampanel in advanced Parkinson’s disease: a randomized, placebo-controlled study. Mov Disord 25(7):896–905. https://doi.org/10.1002/mds.22974

    Article  PubMed  Google Scholar 

  • Elahi B, Phielipp N, Chen R (2012) N-methyl-d-aspartate antagonists in levodopa induced dyskinesia: a meta-analysis. Can J Neurol Sci 39(4):465–472

    Article  PubMed  Google Scholar 

  • Engers DW, Blobaum AL, Gogliotti RD, Cheung YY, Salovich JM, Garcia-Barrantes PM, Daniels JS, Morrison R, Jones CK, Soars MG, Zhuo X, Hurley J, Macor JE, Bronson JJ, Conn PJ, Lindsley CW, Niswender CM, Hopkins CR (2016) Discovery, synthesis, and preclinical characterization of N-(3-Chloro-4-fluorophenyl)-1H-pyrazolo[4,3-b]pyridin-3-amine (VU0418506), a novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu4). ACS Chem Neurosci 7(9):1192–1200. https://doi.org/10.1021/acschemneuro.6b00035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Errico F, Bonito-Oliva A, Bagetta V, Vitucci D, Romano R, Zianni E, Napolitano F, Marinucci S, Di Luca M, Calabresi P, Fisone G, Carta M, Picconi B, Gardoni F, Usiello A (2011) Higher free D-aspartate and N-methyl-d-aspartate levels prevent striatal depotentiation and anticipate l-DOPA-induced dyskinesia. Exp Neurol 232(2):240–250. https://doi.org/10.1016/j.expneurol.2011.09.013

    Article  PubMed  CAS  Google Scholar 

  • Feng ZJ, Zhang X, Chergui K (2014) Allosteric modulation of NMDA receptors alters neurotransmission in the striatum of a mouse model of Parkinson’s disease. Exp Neurol 255:154–160. https://doi.org/10.1016/j.expneurol.2014.03.001

    Article  PubMed  CAS  Google Scholar 

  • Ferreira DG, Temido-Ferreira M, Miranda HV, Batalha VL, Coelho JE, Szegö ÉM, Marques-Morgado I, Vaz SH, Rhee JS, Schmitz M, Zerr I, Lopes LV, Outeiro TF (2017) α-synuclein interacts with PrPC to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci 20(11):1569–1579. https://doi.org/10.1038/nn.4648

    Article  PubMed  CAS  Google Scholar 

  • Fieblinger T, Sebastianutto I, Alcacer C, Bimpisidis Z, Maslava N, Sandberg S, Engblom D, Cenci MA (2014) Mechanisms of dopamine D1 receptor-mediated ERK1/2 activation in the parkinsonian striatum and their modulation by metabotropic glutamate receptor type 5. J Neurosci 34(13):4728–4740. https://doi.org/10.1523/JNEUROSCI.2702-13.2014

    Article  PubMed  CAS  Google Scholar 

  • Fiorentini C, Gardoni F, Spano P, Di Luca M, Missale C (2003) Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-d-aspartate receptors. J Biol Chem 278(22):20196–20202

    Article  PubMed  CAS  Google Scholar 

  • Frank RA, Grant SG (2017) Supramolecular organization of NMDA receptors and the postsynaptic density. Curr Opin Neurobiol 45:139–147. https://doi.org/10.1016/j.conb.2017.05.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gardoni F, Bellone C (2015) Modulation of the glutamatergic transmission by Dopamine: a focus on Parkinson, Huntington and Addiction diseases. Front Cell Neurosci 9:25. https://doi.org/10.3389/fncel.2015.00025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gardoni F, Picconi B, Ghiglieri V, Polli F, Bagetta V, Bernardi G, Cattabeni F, Di Luca M, Calabresi P (2006) A critical interaction between NR2B and MAGUK in l-DOPA induced dyskinesia. J Neurosci 26(11):2914–2922

    Article  PubMed  CAS  Google Scholar 

  • Gardoni F, Sgobio C, Pendolino V, Calabresi P, Di Luca M, Picconi B (2012) Targeting NR2A-containing NMDA receptors reduces l-DOPA-induced dyskinesias. Neurobiol Aging 33(9):2138–2144. https://doi.org/10.1016/j.neurobiolaging.2011.06.019

    Article  PubMed  CAS  Google Scholar 

  • Glasgow NG, Siegler Retchless B, Johnson JW (2015) Molecular bases of NMDA receptor subtype-dependent properties. J Physiol 593(1):83–95. https://doi.org/10.1113/jphysiol.2014.273763

    Article  PubMed  CAS  Google Scholar 

  • Grégoire L, Morin N, Ouattara B, Gasparini F, Bilbe G, Johns D, Vranesic I, Sahasranaman S, Gomez-Mancilla B, Di Paolo T (2011) The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in l-DOPA-treated parkinsonian monkeys. Parkinsonism Relat Disord 17(4):270–276. https://doi.org/10.1016/j.parkreldis.2011.01.008

    Article  PubMed  Google Scholar 

  • Gubellini P, Pisani A, Centonze D, Bernardi G, Calabresi P (2004) Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases. Prog Neurobiol 74(5):271–300

    Article  PubMed  CAS  Google Scholar 

  • Hallett PJ, Dunah AW, Ravenscroft P, Zhou S, Bezard E, Crossman AR, Brotchie JM, Standaert DG (2005) Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology 48(4):503–516

    Article  PubMed  CAS  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696. https://doi.org/10.1038/nrn2911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardingham GE, Do KQ (2016) Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci 17(2):125–134. https://doi.org/10.1038/nrn.2015.19

    Article  PubMed  CAS  Google Scholar 

  • Henley JM, Wilkinson KA (2016) Synaptic AMPA receptor composition in development, plasticity and disease. Nat Rev Neurosci 17(6):337–350. https://doi.org/10.1038/nrn.2016.37

    Article  PubMed  CAS  Google Scholar 

  • Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80(3):704–717. https://doi.org/10.1016/j.neuron.2013.10.025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iderberg H, Maslava N, Thompson AD, Bubser M, Niswender CM, Hopkins CR, Lindsley CW, Conn PJ, Jones CK, Cenci MA (2015) Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson’s disease and l-DOPA-induced dyskinesia: comparison between a positive allosteric modulator and an orthosteric agonist. Neuropharmacology 95:121–129. https://doi.org/10.1016/j.neuropharm.2015.02.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston TH, Fox SH, McIldowie MJ, Piggott MJ, Brotchie JM (2010) Reduction of l-DOPA-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Pharmacol Exp Ther 333(3):865–873. https://doi.org/10.1124/jpet.110.166629

    Article  PubMed  CAS  Google Scholar 

  • Kobylecki C, Cenci MA, Crossman AR, Ravenscroft P (2010) Calcium-permeable AMPA receptors are involved in the induction and expression of l-DOPA-induced dyskinesia in Parkinson’s disease. J Neurochem 114(2):499–511. https://doi.org/10.1111/j.1471-4159.2010.06776.x

    Article  PubMed  CAS  Google Scholar 

  • Kobylecki C, Hill MP, Crossman AR, Ravenscroft P (2011) Synergistic antidyskinetic effects of topiramate and amantadine in animal models of Parkinson’s disease. Mov Disord 26(13):2354–2363. https://doi.org/10.1002/mds.23867

    Article  PubMed  Google Scholar 

  • Kobylecki C, Burn DJ, Kass-Iliyya L, Kellett MW, Crossman AR, Silverdale MA (2014) Randomized clinical trial of topiramate for levodopa-induced dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord 20(4):452–455. https://doi.org/10.1016/j.parkreldis.2014.01.016

    Article  PubMed  Google Scholar 

  • Konitsiotis S, Blanchet PJ, Verhagen L, Lamers E, Chase TN (2000) AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 54(8):1589–1595

    Article  PubMed  CAS  Google Scholar 

  • Konradi C, Westin JE, Carta M, Eaton ME, Kuter K, Dekundy A, Lundblad M, Cenci MA (2004) Transcriptome analysis in a rat model of l-DOPA-induced dyskinesia. Neurobiol Dis 17(2):219–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kosinski CM, Risso Bradley S, Conn PJ, Levey AI, Landwehrmeyer GB, Penney JB Jr, Young AB, Standaert DG (1999) Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia. J Comp Neurol 415(2):266–284

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Dhull DK, Mishra PS (2015) Therapeutic potential of mGluR5 targeting in Alzheimer’s disease. Front Neurosci 9(9):215. https://doi.org/10.3389/fnins.2015.00215

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Hauser RA, Mostillo J, Dronamraju N, Graf A, Merschhemke M, Kenney C (2016) Mavoglurant (AFQ056) in combination with increased levodopa dosages in Parkinson’s disease patients. Int J Neurosci 126(1):20–24. https://doi.org/10.3109/00207454.2013.841685

    Article  PubMed  CAS  Google Scholar 

  • Lachowicz JE, Sibley DR (1997) Molecular characteristics of mammalian dopamine receptors. Pharmacol Toxicol 81(3):105–113

    Article  PubMed  CAS  Google Scholar 

  • Lapper SR, Bolam JP (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51(3):533–545

    Article  PubMed  CAS  Google Scholar 

  • Le Poul E, Boléa C, Girard F, Poli S, Charvin D, Campo B, Bortoli J, Bessif A, Luo B, Koser AJ, Hodge LM, Smith KM, DiLella AG, Liverton N, Hess F, Browne SE, Reynolds IJ (2012) A potent and selective metabotropic glutamate receptor 4 positive allosteric modulator improves movement in rodent models of Parkinson’s disease. J Pharmacol Exp Ther 343(1):167–177. https://doi.org/10.1124/jpet.112.196063

    Article  PubMed  CAS  Google Scholar 

  • Lee FJ, Xue S, Pei L, Vukusic B, Chéry N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111(2):219–230

    Article  PubMed  CAS  Google Scholar 

  • Lees A, Fahn S, Eggert KM, Jankovic J, Lang A, Micheli F, Mouradian MM, Oertel WH, Olanow CW, Poewe W, Rascol O, Tolosa E, Squillacote D, Kumar D (2012) Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson’s disease. Mov Disord 27(2):284–288. https://doi.org/10.1002/mds.23983

    Article  PubMed  CAS  Google Scholar 

  • Levandis G, Bazzini E, Armentero MT, Nappi G, Blandini F (2008) Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol Dis 29(1):161–168

    Article  PubMed  CAS  Google Scholar 

  • Lopez S, Bonito-Oliva A, Pallottino S, Acher F, Fisone G (2011) Activation of metabotropic glutamate 4 receptors decreases l-DOPA-induced dyskinesia in a mouse model of Parkinson’s disease. J Parkinsons Dis 1(4):339–346. https://doi.org/10.3233/JPD-2011-11066

    Article  PubMed  CAS  Google Scholar 

  • Marin C, Jiménez A, Bonastre M, Vila M, Agid Y, Hirsch EC, Tolosa E (2001) LY293558, an AMPA glutamate receptor antagonist, prevents and reverses levodopa-induced motor alterations in Parkinsonian rats. Synapse 42(1):40–47

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Kita H (2003) Activation of group III metabotropic glutamate receptors presynaptically reduces both GABAergic and glutamatergic transmission in the rat globus pallidus. Neuroscience 122(3):727–737

    Article  PubMed  CAS  Google Scholar 

  • Mela F, Marti M, Dekundy A, Danysz W, Morari M, Cenci MA (2007) Antagonism of metabotropic glutamate receptor type 5 attenuates l-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson’s disease. J Neurochem 101(2):483–497

    Article  PubMed  CAS  Google Scholar 

  • Mellone M, Gardoni F (2013) Modulation of NMDA receptor at the synapse: promising therapeutic interventions in disorders of the nervous system. Eur J Pharmacol 719(1–3):75–83. https://doi.org/10.1016/j.ejphar.2013.04.054

    Article  PubMed  CAS  Google Scholar 

  • Mellone M, Stanic J, Hernandez LF, Iglesias E, Zianni E, Longhi A, Prigent A, Picconi B, Calabresi P, Hirsch EC, Obeso JA, Di Luca M, Gardoni F (2015) NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients. Front Cell Neurosci 9:245. https://doi.org/10.3389/fncel.2015.00245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78(1):189–225

    Article  PubMed  CAS  Google Scholar 

  • Moreau C, Delval A, Tiffreau V, Defebvre L, Dujardin K, Duhamel A, Petyt G, Hossein-Foucher C, Blum D, Sablonnière B, Schraen S, Allorge D, Destée A, Bordet R, Devos D (2013) Memantine for axial signs in Parkinson’s disease: a randomised, double-blind, placebo-controlled pilot study. J Neurol Neurosurg Psychiatry 84(5):552–555. https://doi.org/10.1136/jnnp-2012-303182

    Article  PubMed  Google Scholar 

  • Morin N, Grégoire L, Gomez-Mancilla B, Gasparini F, Di Paolo T (2010) Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacology 58(7):981–986. https://doi.org/10.1016/j.neuropharm.2009.12.024

    Article  PubMed  CAS  Google Scholar 

  • Morin N, Jourdain VA, Morissette M, Grégoire L, Di Paolo T (2014) Long-term treatment with l-DOPA and an mGlu5 receptor antagonist prevents changes in brain basal ganglia dopamine receptors, their associated signaling proteins and neuropeptides in parkinsonian monkeys. Neuropharmacology 79:688–706. https://doi.org/10.1016/j.neuropharm.2014.01.014

    Article  PubMed  CAS  Google Scholar 

  • Morissette M, Dridi M, Calon F, Hadj Tahar A, Meltzer LT, Bédard PJ, Di Paolo T (2006) Prevention of dyskinesia by an NMDA receptor antagonist in MPTP monkeys: effect on adenosine A2A receptors. Synapse 60(3):239–250

    Article  PubMed  CAS  Google Scholar 

  • Nash JE, Fox SH, Henry B, Hill MP, Peggs D, McGuire S, Maneuf Y, Hille C, Brotchie JM, Crossman AR (2000) Antiparkinsonian actions of ifenprodil in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp Neurol 165(1):136–142

    Article  PubMed  CAS  Google Scholar 

  • Nash JE, Johnston TH, Collingridge GL, Garner CC, Brotchie JM (2005a) Subcellular redistribution of the synapse-associated proteins PSD-95 and SAP97 in animal models of Parkinson’s disease and l-DOPA-induced dyskinesia. FASEB J 19(6):583–585

    Article  PubMed  CAS  Google Scholar 

  • Nash JE, Ravenscroft P, McGuire S, Crossman AR, Menniti FS, Brotchie JM (2005b) The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates l-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of l-DOPA in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp Neurol 188(2):471–479

    Article  Google Scholar 

  • Navarria L, Zaltieri M, Longhena F, Spillantini MG, Missale C, Spano P, Bellucci A (2015) Alpha-synuclein modulates NR2B-containing NMDA receptors and decreases their levels after rotenone exposure. Neurochem Int 85–86:14–23. https://doi.org/10.1016/j.neuint.2015.03.008

    Article  PubMed  CAS  Google Scholar 

  • Niswender CM, Johnson KA, Weaver CD, Jones CK, Xiang Z, Luo Q, Rodriguez AL, Marlo JE, de Paulis T, Thompson AD, Days EL, Nalywajko T, Austin CA, Williams MB, Ayala JE, Williams R, Lindsley CW, Conn PJ (2008) Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Mol Pharmacol 74(5):1345–1358. https://doi.org/10.1124/mol.108.049551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niswender CM, Jones CK, Lin X, Bubser M, Thompson Gray A, Blobaum AL, Engers DW, Rodriguez AL, Loch MT, Daniels JS, Lindsley CW, Hopkins CR, Javitch JA, Conn PJ (2016) Development and antiparkinsonian activity of VU0418506, a selective positive allosteric modulator of metabotropic glutamate receptor 4 homomers without activity at mGlu2/4 heteromers. ACS Chem Neurosci 7(9):1201–1211. https://doi.org/10.1021/acschemneuro.6b00036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nutt JG, Gunzler SA, Kirchhoff T, Hogarth P, Weaver JL, Krams M, Jamerson B, Menniti FS, Landen JW (2008) Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord 23(13):1860–1866. https://doi.org/10.1002/mds.22169

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh JD, Russell DS, Vaughan CL, Chase TN (1998) Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and l-DOPA administration. Brain Res 813(1):150–159

    Article  PubMed  CAS  Google Scholar 

  • Ouattara B, Gasparini F, Morissette M, Grégoire L, Samadi P, Gomez-Mancilla B, Di Paolo T (2010) Effect of l-DOPA on metabotropic glutamate receptor 5 in the brain of parkinsonian monkeys. J Neurochem 113(3):715–724. https://doi.org/10.1111/j.1471-4159.2010.06635.x

    Article  PubMed  CAS  Google Scholar 

  • Paillé V, Picconi B, Bagetta V, Ghiglieri V, Sgobio C, Di Filippo M, Viscomi MT, Giampà C, Fusco FR, Gardoni F, Bernardi G, Greengard P, Di Luca M, Calabresi P (2010) Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition. J Neurosci 30(42):14182–14193. https://doi.org/10.1523/JNEUROSCI.2149-10.2010

    Article  PubMed  CAS  Google Scholar 

  • Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14(6):383–400. https://doi.org/10.1038/nrn3504

    Article  PubMed  CAS  Google Scholar 

  • Parsons MP, Raymond LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82(2):279–293. https://doi.org/10.1016/j.neuron.2014.03.030

    Article  PubMed  CAS  Google Scholar 

  • Pei L, Lee FJ, Moszczynska A, Vukusic B, Liu F (2004) Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci 24(5):1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Picconi B, Gardoni F, Centonze D, Mauceri D, Cenci MA, Bernardi G, Calabresi P, Di Luca M (2004) Abnormal Ca2+-calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism. J Neurosci 24(23):5283–5291

    Article  PubMed  CAS  Google Scholar 

  • Ponnazhagan R, Harms AS, Thome AD, Jurkuvenaite A, Gogliotti R, Niswender CM, Conn PJ, Standaert DG (2016) The metabotropic glutamate receptor 4 positive allosteric modulator ADX88178 inhibits inflammatory responses in primary microglia. J Neuroimmune Pharmacol 11(2):231–237. https://doi.org/10.1007/s11481-016-9655-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Porras G, Berthet A, Dehay B, Li Q, Ladepeche L, Normand E, Dovero S, Martinez A, Doudnikoff E, Martin-Négrier ML, Chuan Q, Bloch B, Choquet D, Boué-Grabot E, Groc L, Bezard E (2012) PSD-95 expression controls l-DOPA dyskinesia through dopamine D1 receptor trafficking. J Clin Invest 122(11):3977–3989. https://doi.org/10.1172/JCI59426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quintana A, Melon C, Kerkerian-Le Goff L, Salin P, Savasta M, Sgambato-Faure V (2010) Forelimb dyskinesia mediated by high-frequency stimulation of the subthalamic nucleus is linked to rapid activation of the NR2B subunit of N-methyl-d-aspartate receptors. Eur J Neurosci 32(3):423–434. https://doi.org/10.1111/j.1460-9568.2010.07290.x

    Article  PubMed  Google Scholar 

  • Rascol O, Barone P, Behari M, Emre M, Giladi N, Olanow CW, Ruzicka E, Bibbiani F, Squillacote D, Patten A, Tolosa E (2012) Perampanel in Parkinson disease fluctuations: a double-blind randomized trial with placebo and entacapone. Clin Neuropharmacol 35(1):15–20. https://doi.org/10.1097/WNF.0b013e318241520b

    Article  PubMed  CAS  Google Scholar 

  • Rouse ST, Marino MJ, Bradley SR, Awad H, Wittmann M, Conn PJ (2000) Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: implications for treatment of Parkinson’s disease and related disorders. Pharmacol Ther 88(3):427–435

    Article  PubMed  CAS  Google Scholar 

  • Rylander D, Recchia A, Mela F, Dekundy A, Danysz W, Cenci MA (2009) Pharmacological modulation of glutamate transmission in a rat model of l-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. J Pharmacol Exp Ther 330(1):227–235. https://doi.org/10.1124/jpet.108.150425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rylander D, Iderberg H, Li Q, Dekundy A, Zhang J, Li H, Baishen R, Danysz W, Bezard E, Cenci MA (2010) A mGluR5 antagonist under clinical development improves l-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol Dis 39(3):352–361. https://doi.org/10.1016/j.nbd.2010.05.001

    Article  PubMed  CAS  Google Scholar 

  • Samadi P, Grégoire L, Morissette M, Calon F, Hadj Tahar A, Dridi M, Belanger N, Meltzer LT, Bédard PJ, Di Paolo T (2008) mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging 29(7):1040–1051

    Article  PubMed  CAS  Google Scholar 

  • Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault JA, Hervé D, Greengard P, Fisone G (2007) Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in l-DOPA-induced dyskinesia. J Neurosci 27(26):6995–7005

    Article  PubMed  CAS  Google Scholar 

  • Santini E, Sgambato-Faure V, Li Q, Savasta M, Dovero S, Fisone G, Bezard E (2010) Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in l-DOPA-induced dyskinesia. PLoS One 5(8):e12322. https://doi.org/10.1371/journal.pone.0012322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanz-Clemente A, Nicoll RA, Roche KW (2013) Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist 19(1):62–75. https://doi.org/10.1177/1073858411435129

    Article  PubMed  CAS  Google Scholar 

  • Scott L, Zelenin S, Malmersjö S, Kowalewski JM, Markus EZ, Nairn AC, Greengard P, Brismar H, Aperia A (2006) Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines. Proc Natl Acad Sci USA 103(3):762–767

    Article  PubMed  CAS  Google Scholar 

  • Sgambato-Faure V, Cenci MA (2012) Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog Neurobiol 96(1):69–86. https://doi.org/10.1016/j.pneurobio.2011.10.005

    Article  PubMed  CAS  Google Scholar 

  • Silverdale MA, Nicholson SL, Crossman AR, Brotchie JM (2005) Topiramate reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson’s disease. Mov Disord 20(4):403–409

    Article  PubMed  Google Scholar 

  • Silverdale MA, Kobylecki C, Hallett PJ, Li Q, Dunah AW, Ravenscroft P, Bezard E, Brotchie JM (2010) Synaptic recruitment of AMPA glutamate receptor subunits in levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate. Synapse 64(2):177–180. https://doi.org/10.1002/syn.20739

    Article  PubMed  CAS  Google Scholar 

  • Song L, Zhang Z, Hu R, Cheng J, Li L, Fan Q, Wu N, Gan J, Zhou M, Liu Z (2016) Targeting the D1-N-methyl-d-aspartate receptor complex reduces l-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned Parkinson’s rats. Drug Des Devel Ther 10:547–555. https://doi.org/10.2147/DDDT.S93487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanic J, Carta M, Eberini I, Pelucchi S, Marcello E, Genazzani AA, Racca C, Mulle C, Di Luca M, Gardoni F (2015) Rabphilin 3A retains NMDA receptors at synaptic sites through interaction with GluN2A/PSD-95 complex. Nat Commun 6:10181. https://doi.org/10.1038/ncomms10181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanic J, Mellone M, Napolitano F, Racca C, Zianni E, Minocci D, Ghiglieri V, Thiolat ML, Li Q, Longhi A, De Rosa A, Picconi B, Bezard E, Calabresi P, Di Luca M, Usiello A, Gardoni F (2017) Rabphilin 3A: a novel target for the treatment of levodopa-induced dyskinesias. Neurobiol Dis 108:54–64. https://doi.org/10.1016/j.nbd.2017.08.001

    Article  PubMed  CAS  Google Scholar 

  • Tahar AH, Grégoire L, Darré A, Bélanger N, Meltzer L, Bédard PJ (2004) Effect of a selective glutamate antagonist on l-DOPA-induced dyskinesias in drug-naive parkinsonian monkeys. Neurobiol Dis 15(2):171–176

    Article  Google Scholar 

  • Testa CM, Standaert DG, Young AB, Penney JB Jr (1994) Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci 14(5 Pt 2):3005–3018

    Article  PubMed  CAS  Google Scholar 

  • Testa CM, Standaert DG, Landwehrmeyer GB, Penney JB Jr, Young AB (1995) Differential expression of mGluR5 metabotropic glutamate receptor mRNA by rat striatal neurons. J Comp Neurol 354(2):241–252

    Article  PubMed  CAS  Google Scholar 

  • Tison F, Keywood C, Wakefield M, Durif F, Corvol JC, Eggert K, Lew M, Isaacson S, Bezard E, Poli SM, Goetz CG, Trenkwalder C, Rascol O (2016) A Phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s Disease. Mov Disord 31(9):1373–1380. https://doi.org/10.1002/mds.26659

    Article  PubMed  CAS  Google Scholar 

  • Tozzi A, de Iure A, Bagetta V, Tantucci M, Durante V, Quiroga-Varela A, Costa C, Di Filippo M, Ghiglieri V, Latagliata EC, Wegrzynowicz M, Decressac M, Giampà C, Dalley JW, Xia J, Gardoni F, Mellone M, El-Agnaf OM, Ardah MT, Puglisi-Allegra S, Björklund A, Spillantini MG, Picconi B, Calabresi P (2016) Alpha-Synuclein produces early behavioral alterations via striatal cholinergic synaptic dysfunction by interacting with GluN2D N-methyl-d-Aspartate receptor subunit. Biol Psychiatry 79(5):402–414. https://doi.org/10.1016/j.biopsych.2015.08.013

    Article  PubMed  CAS  Google Scholar 

  • Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496. https://doi.org/10.1124/pr.109.002451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trenkwalder C, Stocchi F, Poewe W, Dronamraju N, Kenney C, Shah A, von Raison F, Graf A (2016) Mavoglurant in Parkinson’s patients with l-Dopa-induced dyskinesias: two randomized phase 2 studies. Mov Disord 31(7):1054–1058. https://doi.org/10.1002/mds.26585

    Article  PubMed  CAS  Google Scholar 

  • Valenti O, Marino MJ, Wittmann M, Lis E, DiLella AG, Kinney GG, Conn PJ (2003) Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. J Neurosci 23(18):7218–7226

    Article  PubMed  CAS  Google Scholar 

  • Valenti O, Mannaioni G, Seabrook GR, Conn PJ, Marino MJ (2005) Group III metabotropic glutamate-receptor-mediated modulation of excitatory transmission in rodent substantia nigra pars compacta dopamine neurons. J Pharmacol Exp Ther 313(3):1296–1304

    Article  PubMed  CAS  Google Scholar 

  • Varanese S, Howard J, Di Rocco A (2010) NMDA antagonist memantine improves levodopa-induced dyskinesias and “on-off” phenomena in Parkinso’s disease. Mov Disord 25(4):508–510. https://doi.org/10.1002/mds.22917

    Article  PubMed  Google Scholar 

  • Wessell RH, Ahmed SM, Menniti FS, Dunbar GL, Chase TN, Oh JD (2004) NR2B selective NMDA receptor antagonist CP-101,606 prevents levodopa-induced motor response alterations in Hemi-Parkinsonian rats. Neuropharmacology 47(2):184–194

    Article  PubMed  CAS  Google Scholar 

  • Wolf E, Seppi K, Katzenschlager R, Hochschorner G, Ransmayr G, Schwingenschuh P, Ott E, Kloiber I, Haubenberger D, Auff E, Poewe W (2010) Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord 25(10):1357–1363. https://doi.org/10.1002/mds.23034

    Article  PubMed  Google Scholar 

  • Yamamoto N, Soghomonian JJ (2009) Metabotropic glutamate mGluR5 receptor blockade opposes abnormal involuntary movements and the increases in glutamic acid decarboxylase mRNA levels induced by l-DOPA in striatal neurons of 6-hydroxydopamine-lesioned rats. Neuroscience 163(4):1171–1180. https://doi.org/10.1016/j.neuroscience.2009.07.060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan H, Low CM, Moody OA, Jenkins A, Traynelis SF (2015) Ionotropic GABA and glutamate receptor mutations and human neurologic diseases. Mol Pharmacol 88(1):203–217. https://doi.org/10.1124/mol.115.097998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Chergui K (2015) Dopamine depletion of the striatum causes a cell-type specific reorganization of GluN2B- and GluN2D-containing NMDA receptors. Neuropharmacology 92:108–115. https://doi.org/10.1016/j.neuropharm.2015.01.007

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Feng ZJ, Chergui K (2014) GluN2D-containing NMDA receptors inhibit neurotransmission in the mouse striatum through a cholinergic mechanism: implication for Parkinson’s disease. Neurochem 129(4):581–590. https://doi.org/10.1111/jnc.12658

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Umberto Veronesi Foundation Post-doctoral fellowship—Grant 2015 to MM and Progetto di Ricerca di Interesse Nazionale (PRIN2015FNWP34) to FG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Gardoni.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mellone, M., Gardoni, F. Glutamatergic mechanisms in l-DOPA-induced dyskinesia and therapeutic implications. J Neural Transm 125, 1225–1236 (2018). https://doi.org/10.1007/s00702-018-1846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-018-1846-8

Keywords

Navigation