Skip to main content

Glutamatergic Receptors in Parkinson’s Disease

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Extracellular concentrations of the excitatory glutamate are maintained at relatively low levels to avoid an excessive activation of glutamate receptors (GluRs) that can trigger a cell death. This neuronal loss induced by hyperexcitation of GluRs has been associated with a wide range of acute and chronic neurological disorders such as Parkinson’s disease (PD). In fact, altered glutamatergic neurotransmission and metabolical dysfunction seems to be crucial in the pathophysiology of PD. Moreover, degeneration of dopamine nigral neurons of the substantia nigra pars compacta (SNpc) provokes striatal dopaminergic denervation and a cascade of functional modifications in the activity of basal ganglia nuclei including excitatory glutamate transmission. Glutamate receptors are divided into two distinct groups, ionotropic and metabotropic receptors. The ionotropic receptors (iGluRs) are further subdivided into three groups: (i) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), (ii) kainate, and (iii) N-methyl-d-aspartate (NMDA) receptor channels. The metabotropic receptors (mGluRs) are coupled to GTP-binding proteins (G proteins) and regulate the production of intracellular messengers. In this chapter, we review recent progress in the research of GluRs with special emphasis on the molecular diversity of the mGluR system and its implications in the physiopathology of PD. Finally, based on these evidences, we highlight possible therapeutic strategies that might be important to slow down the progression of PD as well as to modulate levodopa-induced dyskinesias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghajanian, G. K., & Marek, G. J. (1999). Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. Brain Research, 825(1–2), 161–171.

    CAS  PubMed  Google Scholar 

  • Allen, J. W., Knoblach, S. M., & Faden, A. I. (2000). Activation of group I metabotropic glutamate receptors reduces neuronal apoptosis but increases necrotic cell death in vitro. [Research support, U.S. Gov’t, non-P.H.S. research support, U.S. Gov’t, P.H.S.]. Cell Death and Differentiation, 7(5), 470–476. doi:10.1038/sj.cdd.4400678.

    CAS  PubMed  Google Scholar 

  • Annoura, H., Nakanishi, K., Uesugi, M., Fukunaga, A., Miyajima, A., Tamura-Horikawa, Y., & Tamura, S. (1999). A novel class of Na+ and Ca2+ channel dual blockers with highly potent anti-ischemic effects. Bioorganic & Medicinal Chemistry Letters, 9(20), 2999–3002.

    CAS  Google Scholar 

  • Armstrong, N., Sun, Y., Chen, G. Q., & Gouaux, E. (1998). Structure of a glutamate-receptor ligand-binding core in complex with kainate. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. Research support, U.S. Gov’t, P.H.S.]. Nature, 395(6705), 913–917. doi:10.1038/27692.

    CAS  PubMed  Google Scholar 

  • Austin, P. J., Betts, M. J., Broadstock, M., O’Neill, M. J., Mitchell, S. N., & Duty, S. (2010). Symptomatic and neuroprotective effects following activation of nigral group III metabotropic glutamate receptors in rodent models of Parkinson’s disease. [Research support, non-U.S. Gov’t]. British Journal of Pharmacology, 160(7), 1741–1753. doi:10.1111/j.1476-5381.2010.00820.x.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Awad, H., Hubert, G. W., Smith, Y., Levey, A. I., & Conn, P. J. (2000). Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. [In vitro research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. Research support, U.S. Gov’t, P.H.S.]. Journal of Neuroscience, 20(21), 7871–7879.

    CAS  PubMed  Google Scholar 

  • Battaglia, G., Busceti, C. L., Molinaro, G., Biagioni, F., Traficante, A., Nicoletti, F., & Bruno, V. (2006). Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. [Research support, non-U.S. Gov’t]. Journal of Neuroscience, 26(27), 7222–7229. doi:10.1523/JNEUROSCI.1595-06.2006.

    CAS  PubMed  Google Scholar 

  • Battaglia, G., Busceti, C. L., Fabrizio, P., Francesca, B., Francesco, F., Antonio, P., Valeria, B., Stefano, R., & Ferdinando, N. (2003). Protective role of group-II metabotropic glutamate receptors against nigro-striatal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Neuropharmacology, 45(2), 155–166.

    CAS  PubMed  Google Scholar 

  • Bean, L., Zheng, H., Patel, K. P., & Monaghan, D. T. (2006). Regional variations in NMDA receptor downregulation in streptozotocin-diabetic rat brain. Brain Research, 1115(1), 217–222. doi:10.1016/j.brainres.2006.07.090.

    CAS  PubMed  Google Scholar 

  • Beckerman, M. A., Van Kempen, T. A., Justice, N. J., Milner, T. A., & Glass, M. J. (2012). Corticotropin-releasing factor in the mouse central nucleus of the amygdala: Ultrastructural distribution in NMDA-NR1 receptor subunit expressing neurons as well as projection neurons to the bed nucleus of the stria terminalis. Experimental Neurology. doi:10.1016/j.expneurol.2012.10.009.

    Google Scholar 

  • Betarbet, R., Poisik, O., Sherer, T. B., & Greenamyre, J. T. (2004). Differential expression and ser897 phosphorylation of striatal N-methyl-D-aspartate receptor subunit NR1 in animal models of Parkinson’s disease. [Research support, U.S. Gov’t, P.H.S.]. Experimental Neurology, 187(1), 76–85. doi:10.1016/j.expneurol.2003.12.012.

    CAS  PubMed  Google Scholar 

  • Bibbiani, F., Oh, J. D., Kielaite, A., Collins, M. A., Smith, C., & Chase, T. N. (2005). Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced motor complications in animal models of PD. [Comparative study]. Experimental Neurology, 196(2), 422–429. doi:10.1016/j.expneurol.2005.08.017.

    CAS  PubMed  Google Scholar 

  • Blandini, F., & Armentero, M. T. (2012). New pharmacological avenues for the treatment of L-DOPA-induced dyskinesias in Parkinson’s disease: Targeting glutamate and adenosine receptors. [Review]. Expert Opinion on Investigational Drugs, 21(2), 153–168. doi:10.1517/13543784.2012.651457.

    CAS  PubMed  Google Scholar 

  • Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. [Review]. Nature, 361(6407), 31–39. doi:10.1038/361031a0.

    CAS  PubMed  Google Scholar 

  • Blumcke, I., Behle, K., Malitschek, B., Kuhn, R., Knopfel, T., Wolf, H. K., & Wiestler, O. D. (1996). Immunohistochemical distribution of metabotropic glutamate receptor subtypes mGluR1b, mGluR2/3, mGluR4a and mGluR5 in human hippocampus. [Research support, non-U.S. Gov’t]. Brain Research, 736(1–2), 217–226.

    CAS  PubMed  Google Scholar 

  • Bradley, S. R., Marino, M. J., Wittmann, M., Rouse, S. T., Awad, H., Levey, A. I., & Conn, P. J. (2000). Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia nigra pars reticulata. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. Research support, U.S. Gov’t, P.H.S.]. Journal of Neuroscience, 20(9), 3085–3094.

    CAS  PubMed  Google Scholar 

  • Breysse, N., Baunez, C., Spooren, W., Gasparini, F., & Amalric, M. (2002). Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. [Research support, non-U.S. Gov't]. Journal of Neuroscience, 22(13), 5669–5678. doi:20026513.

    CAS  PubMed  Google Scholar 

  • Broadstock, M., Austin, P. J., Betts, M. J., & Duty, S. (2012). Antiparkinsonian potential of targeting group III metabotropic glutamate receptor subtypes in the rodent substantia nigra pars reticulata. [Research support, non-U.S. Gov’t]. British Journal of Pharmacology, 165(4b), 1034–1045. doi:10.1111/j.1476-5381.2011.01515.x.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carlsson, A., Lindqvist, M., & Magnusson, T. (1957). 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature, 180(4596), 1200.

    CAS  PubMed  Google Scholar 

  • Catania, M. V., Bellomo, M., Di Giorgi-Gerevini, V., Seminara, G., Giuffrida, R., Romeo, R., De Blasi, A., & Nicoletti, F. (2001). Endogenous activation of group-I metabotropic glutamate receptors is required for differentiation and survival of cerebellar Purkinje cells. [Research support, non-U.S. Gov't]. Journal of Neuroscience, 21(19), 7664–7673.

    CAS  PubMed  Google Scholar 

  • Chappell, A. S., Gonzales, C., Williams, J., Witte, M. M., Mohs, R. C., & Sperling, R. (2007). AMPA potentiator treatment of cognitive deficits in Alzheimer disease. [Randomized controlled trial research support, non-U.S. Gov’t]. Neurology, 68(13), 1008–1012. doi:10.1212/01.wnl.0000260240.46070.7c.

    CAS  PubMed  Google Scholar 

  • Chen, J. J. (2011). Pharmacologic safety concerns in Parkinson’s disease: Facts and insights. [Review]. International Journal of Neuroscience, 121(Suppl 2), 45–52. doi:10.3109/00207454.2011.620193.

    CAS  PubMed  Google Scholar 

  • Chen, L., Liu, J., Ali, U., Gui, Z. H., Hou, C., Fan, L. L., Wang, Y., & Wang, T. (2011). Chronic, systemic treatment with a metabotropic glutamate receptor 5 antagonist produces anxiolytic-like effects and reverses abnormal firing activity of projection neurons in the basolateral nucleus of the amygdala in rats with bilateral 6-OHDA lesions. [Research support, non-U.S. Gov’t]. The Brain Research Bulletin, 84(3), 215–223. doi:10.1016/j.brainresbull.2011.01.005.

    CAS  Google Scholar 

  • Clarkson, A. N., Overman, J. J., Zhong, S., Mueller, R., Lynch, G., & Carmichael, S. T. (2011). AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke. [Research support, non-U.S. Gov’t]. Journal of Neuroscience, 31(10), 3766–3775. doi:10.1523/JNEUROSCI.5780-10.2011.

    CAS  PubMed  Google Scholar 

  • Collingridge, G. L., Volianskis, A., Bannister, N., France, G., Hanna, L., Mercier, M., Tidball, P., Fang, G., Irvine, M. W., Costa, B. M., Monaghan, D. T., Bortolotto, Z. A., Molnar, E., Lodge, D., & Jane, D. E. (2013). The NMDA receptor as a target for cognitive enhancement. Neuropharmacology, 64(1), 13–26. doi:.

    CAS  PubMed  Google Scholar 

  • Conn, P. J., Battaglia, G., Marino, M. J., & Nicoletti, F. (2005). Metabotropic glutamate receptors in the basal ganglia motor circuit. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S. review]. Nature Reviews Neuroscience, 6(10), 787–798. doi:10.1038/nrn1763.

    CAS  PubMed  Google Scholar 

  • Conn, P. J., Lindsley, C. W., & Jones, C. K. (2009). Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. [Review]. Trends in Pharmacological Sciences, 30(1), 25–31. doi:10.1016/j.tips.2008.10.006.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Conn, P. J., & Pin, J. P. (1997). Pharmacology and functions of metabotropic glutamate receptors. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S. review]. Annual Review of Pharmacology and Toxicology, 37, 205–237. doi:10.1146/annurev.pharmtox.37.1.205.

    CAS  PubMed  Google Scholar 

  • Conti, V., Aghaie, A., Cilli, M., Martin, N., Caridi, G., Musante, L., Candiano, G., Castagna, M., Fairen, A., Ravazzolo, R., Guenet, J. L., & Puliti, A. (2006). crv4, a mouse model for human ataxia associated with kyphoscoliosis caused by an mRNA splicing mutation of the metabotropic glutamate receptor 1 (Grm1). [Research support, non-U.S. Gov't]. International Journal of Molecular Medicine, 18(4), 593–600.

    CAS  PubMed  Google Scholar 

  • Corona, J. C., & Tapia, R. (2007). Ca2+ −permeable AMPA receptors and intracellular Ca2+ determine motor neuron vulnerability in rat spinal cord in vivo. [Research support, non-U.S. Gov’t]. Neuropharmacology, 52(5), 1219–1228. doi:10.1016/j.neuropharm.2006.12.008.

    CAS  PubMed  Google Scholar 

  • Corti, C., Aldegheri, L., Somogyi, P., & Ferraguti, F. (2002). Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. [Research support, non-U.S. Gov’t]. Neuroscience, 110(3), 403–420.

    CAS  PubMed  Google Scholar 

  • Corti, C., Crepaldi, L., Mion, S., Roth, A. L., Xuereb, J. H., & Ferraguti, F. (2007). Altered dimerization of metabotropic glutamate receptor 3 in schizophrenia. Biological Psychiatry, 62(7), 747–755. doi:10.1016/j.biopsych.2006.12.005.

    CAS  PubMed  Google Scholar 

  • Dario, C., Giuseppina, M., Emanuela, B., Paola, P., Daniela, V., Graziella, M., Chelliah, S., Cyril, G., Nadia, O., Jean-Philippe, P., Francine, A., Antonio, P., Corinne, B., Christophe, M., Lydia Kerkerian-Le, G., & Paolo, G. (2009). Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: Implications for Parkinson's disease treatment. [Research support, non-U.S. Gov’t]. Journal of Neurochemistry, 109(4), 1096–1105. doi:10.1111/j.1471-4159.2009.06036.x.

    Google Scholar 

  • Dauer, W., & Przedborski, S. (2003). Parkinson’s disease: Mechanisms and models. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. Research support, U.S. Gov’t, P.H.S. review]. Neuron, 39(6), 889–909.

    CAS  PubMed  Google Scholar 

  • Daw, M. I., Scott, H. L., & Isaac, J. T. (2007). Developmental synaptic plasticity at the thalamocortical input to barrel cortex: Mechanisms and roles. [Research support, N.I.H., intramural research support, non-U.S. Gov’t review]. Molecular and Cellular Neuroscience, 34(4), 493–502. doi:10.1016/j.mcn.2007.01.001.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dawson, L., Chadha, A., Megalou, M., & Duty, S. (2000). The group II metabotropic glutamate receptor agonist, DCG-IV, alleviates akinesia following intranigral or intraventricular administration in the reserpine-treated rat. [Research support, non-U.S. Gov’t]. British Journal of Pharmacology, 129(3), 541–546. doi:10.1038/sj.bjp.0703105.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dawson, N., Xiao, X., McDonald, M., Higham, D. J., Morris, B. J., & Pratt, J. A. (2012). Sustained NMDA receptor hypofunction induces compromised neural systems integration and schizophrenia-like alterations in functional brain networks. Cerebral Cortex. doi:10.1093/cercor/bhs322.

    PubMed  Google Scholar 

  • Del Dotto, P., Pavese, N., Gambaccini, G., Bernardini, S., Metman, L. V., Chase, T. N., & Bonuccelli, U. (2001). Intravenous amantadine improves levadopa-induced dyskinesias: An acute double-blind placebo-controlled study. [Clinical trial randomized controlled trial]. Movement Disorders, 16(3), 515–520.

    PubMed  Google Scholar 

  • Di Chiara, G., Morelli, M., & Consolo, S. (1994). Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. [Research support, non-U.S. Gov’t review]. Trends in Neuroscience, 17(6), 228–233.

    Google Scholar 

  • Dingledine, R., Borges, K., Bowie, D., & Traynelis, S. F. (1999). The glutamate receptor ion channels. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S. review]. Pharmacological Reviews, 51(1), 7–61.

    CAS  PubMed  Google Scholar 

  • Doherty, F. C., & Sladek, C. D. (2011). NMDA receptor subunit expression in the supraoptic nucleus of adult rats: Dominance of NR2B and NR2D. [Research support, N.I.H., extramural]. Brain Research, 1388, 89–99. doi:10.1016/j.brainres.2011.03.015.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunah, A. W., Yasuda, R. P., Luo, J., Wang, Y., Prybylowski, K. L., & Wolfe, B. B. (1999). Biochemical studies of the structure and function of the N-methyl-D-aspartate subtype of glutamate receptors. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S. review]. Molecular Neurobiology, 19(2), 151–179. doi:10.1007/BF02743658.

    CAS  PubMed  Google Scholar 

  • Ehlers, M. D., Tingley, W. G., & Huganir, R. L. (1995). Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. [Research support, non-U.S. Gov’t]. Science, 269(5231), 1734–1737.

    CAS  PubMed  Google Scholar 

  • Faden, A. I., O’Leary, D. M., Fan, L., Bao, W., Mullins, P. G., & Movsesyan, V. A. (2001). Selective blockade of the mGluR1 receptor reduces traumatic neuronal injury in vitro and improve so outcome after brain trauma. [In vitro research support, U.S. Gov’t, non-P.H.S. Research support, U.S. Gov’t, P.H.S.]. Experimental Neurology, 167(2), 435–444. doi:10.1006/exnr.2000.7577.

    CAS  PubMed  Google Scholar 

  • Fallarino, F., Volpi, C., Fazio, F., Notartomaso, S., Vacca, C., Busceti, C., Bicciato, S., Battaglia, G., Bruno, V., Puccetti, P., Fioretti, M. C., Nicoletti, F., Grohmann, U., & Di Marco, R. (2010). Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation. [Research support, non-U.S. Gov’t]. Nature Medicine, 16(8), 897–902. doi:10.1038/nm.2183.

    CAS  PubMed  Google Scholar 

  • Fantin, M., Auberson, Y. P., & Morari, M. (2008). Differential effect of NR2A and NR2B subunit selective NMDA receptor antagonists on striato-pallidal neurons: Relationship to motor response in the 6-hydroxydopamine model of parkinsonism. [Research support, non-U.S. Gov’t]. Journal of Neurochemistry, 106(2), 957–968. doi:10.1111/j.1471-4159.2008.05439.x.

    CAS  PubMed  Google Scholar 

  • Fell, M. J., Perry, K. W., Falcone, J. F., Johnson, B. G., Barth, V. N., Rash, K. S., Lucaites, V. L., Threlkeld, P. G., Monn, J. A., McKinzie, D. L., Marek, G. J., Svensson, K. A., & Nelson, D. L. (2009). In vitro and in vivo evidence for a lack of interaction with dopamine D2 receptors by the metabotropic glutamate 2/3 receptor agonists 1S,2S,5R,6S-2-aminobicyclo[3.1.0]hexane-2,6-bicaroxylate monohydrate (LY354740) and (−)-2-oxa-4-aminobicyclo[3.1.0] Hexane-4,6-dicarboxylic acid (LY379268). [Research support, non-U.S. Gov’t]. Journal of Pharmacology and Experimental Therapeutics, 331(3), 1126–1136. doi:10.1124/jpet.109.160598.

    CAS  PubMed  Google Scholar 

  • Feyissa, A. M., Woolverton, W. L., Miguel-Hidalgo, J. J., Wang, Z., Kyle, P. B., Hasler, G., Stockmeier, C. A., Iyo, A. H., & Karolewicz, B. (2010). Elevated level of metabotropic glutamate receptor 2/3 in the prefrontal cortex in major depression. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Progress in Neuropsychopharmacology & Biological Psychiatry, 34(2), 279–283. doi:10.1016/j.pnpbp.2009.11.018.

    CAS  Google Scholar 

  • Flavio, K., Taisuke, T., Helen, H., Guy, S., David, B., Takeshi, I., Sangram, S., & Roberto, M. (2003). APP processing and synaptic function. Neuron, 37(6), 925–937.

    Google Scholar 

  • Fonnum, F. (1984). Glutamate: A neurotransmitter in mammalian brain. [Review]. Journal of Neurochemistry, 42(1), 1–11.

    CAS  PubMed  Google Scholar 

  • Gardoni, F., Sgobio, C., Pendolino, V., Calabresi, P., Di Luca, M., & Picconi, B. (2012). Targeting NR2A-containing NMDA receptors reduces L-DOPA-induced dyskinesias. [Research support, non-U.S. Gov’t]. Neurobiology of Aging, 33(9), 2138–2144. doi:10.1016/j.neurobiolaging.2011.06.019.

    CAS  PubMed  Google Scholar 

  • Geurts, J. J., Wolswijk, G., Bo, L., Redeker, S., Ramkema, M., Troost, D., & Aronica, E. (2005). Expression patterns of group III metabotropic glutamate receptors mGluR4 and mGluR8 in multiple sclerosis lesions. [Comparative study research support, non-U.S. Gov’t]. The Journal of Neuroimmunology, 158(1–2), 182–190. doi:10.1016/j.jneuroim.2004.08.012.

    CAS  Google Scholar 

  • Greco, B., Lopez, S., van der Putten, H., Flor, P. J., & Amalric, M. (2010). Metabotropic glutamate 7 receptor subtype modulates motor symptoms in rodent models of Parkinson’s disease. [Research support, non-U.S. Gov’t]. Journal of Pharmacology and Experimental, 332(3), 1064–1071. doi10.1124/jpet.109.162115.

    CAS  Google Scholar 

  • Greenamyre, J. T. (1993). Glutamate-dopamine interactions in the basal ganglia: Relationship to Parkinson’s disease. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.research support, U.S. Gov’t, P.H.S.review]. Journal of Neural Transmission. General Section, 91(2–3), 255–269.

    CAS  PubMed  Google Scholar 

  • Hallett, P. J., Dunah, A. W., Ravenscroft, P., Zhou, S., Bezard, E., Crossman, A. R., Brotchie, J., & Standaert, D. G. (2005). Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. [Comparative study research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. Neuropharmacology, 48(4), 503–516. doi:10.1016/j.neuropharm.2004.11.008.

    CAS  PubMed  Google Scholar 

  • Hallett, P. J., & Standaert, D. G. (2004). Rationale for and use of NMDA receptor antagonists in Parkinson’s disease. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S. review]. Pharmacology & Therapeutics, 102(2), 155–174. doi:10.1016/j.pharmthera.2004.04.001.

    CAS  Google Scholar 

  • Hara, Y., & Pickel, V. M. (2008). Preferential relocation of the N-methyl-D-aspartate receptor NR1 subunit in nucleus accumbens neurons that contain dopamine D1 receptors in rats showing an apomorphine-induced sensorimotor gating deficit. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Neuroscience, 154(3), 965–977. doi:10.1016/j.neuroscience.2008.04.009.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi, T., Umemori, H., Mishina, M., & Yamamoto, T. (1999). The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. [Research support, non-U.S. Gov’t]. Nature, 397(6714), 72–76. doi:10.1038/16269.

    CAS  PubMed  Google Scholar 

  • Hopkins, C. R., Lindsley, C. W., & Niswender, C. M. (2009). mGluR4-positive allosteric modulation as potential treatment for Parkinson’s disease. [Research support, non-U.S. Gov’t review]. Future Medicinal Chemistry, 1(3), 501–513. doi:10.4155/fmc.09.38.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hubsher, G., Haider, M., & Okun, M. S. (2012). Amantadine: The journey from fighting flu to treating Parkinson disease. [Review]. Neurology, 78(14), 1096–1099. doi:10.1212/WNL.0b013e31824e8f0d.

    CAS  PubMed  Google Scholar 

  • Isaac, J. T., Nicoll, R. A., & Malenka, R. C. (1995). Evidence for silent synapses: Implications for the expression of LTP. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. Neuron, 15(2), 427–434.

    CAS  PubMed  Google Scholar 

  • Jarzylo, L. A., & Man, H. Y. (2012). Parasynaptic NMDA receptor signaling couples neuronal glutamate transporter function to AMPA receptor synaptic distribution and stability. [Comparative study research support, N.I.H., extramural research support, non-U.S. Gov’t]. Journal of Neuroscience, 32(7), 2552–2563. doi:10.1523/JNEUROSCI.3237-11.2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jellinger, K. A. (2002). Recent developments in the pathology of Parkinson’s disease. [Research support, non-U.S. Gov’t review]. Journal of Neural Transmission, Supplement (62), 347–376.

    Google Scholar 

  • Jimenez, A., Marin, C., Bonastre, M., & Tolosa, E. (1999). Narrow beneficial effect of dextromethorphan on levodopa-induced motor response alterations in an experimental model of parkinsonism. [Research support, non-U.S. Gov’t]. Brain Research, 839(1), 190–193.

    CAS  PubMed  Google Scholar 

  • Johnson, K. A., Conn, P. J., & Niswender, C. M. (2009). Glutamate receptors as therapeutic targets for Parkinson’s disease. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. CNS Neurological Disorders-drug Targets, 8(6), 475–491.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones, C. K., Bubser, M., Thompson, A. D., Dickerson, J. W., Turle-Lorenzo, N., Amalric, M., Blobaum, A. L., Bridges, T. M., Morrison, R. D., Jadhav, S., Engers, D. W., Italiano, K., Bode, J., Daniels, J. S., Lindsley, C. W., Hopkins, C. R., Conn, P. J., & Niswender, C. M. (2012). The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson's disease. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Journal of Pharmacology and Experimental Therapeutics, 340(2), 404–421. doi:10.1124/jpet.111.187443.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katayama, J., Akaike, N., & Nabekura, J. (2003). Characterization of pre-and post-synaptic metabotropic glutamate receptor-mediated inhibitory responses in substantia nigra dopamine neurons. Neuroscience Research, 45(1), 101–115.

    CAS  PubMed  Google Scholar 

  • Kaufmann, W. A., Matsui, K., Jeromin, A., Nerbonne, J. M., & Ferraguti, F. (2012). Kv4.2 potassium channels segregate to extrasynaptic domains and influence intrasynaptic NMDA receptor NR2B subunit expression. Brain Structure & Function, 218(5), 1115–1132. doi:10.1007/s00429-012-0450-1.

    Google Scholar 

  • Kew, J. N., & Kemp, J. A. (2005). Ionotropic and metabotropic glutamate receptor structure and pharmacology. [Review]. Psychopharmacology (Berl), 179(1), 4–29. doi:10.1007/s00213-005-2200-z.

    CAS  Google Scholar 

  • Kobylecki, C., Cenci, M. A., Crossman, A. R., & Ravenscroft, P. (2010). Calcium-permeable AMPA receptors are involved in the induction and expression of L-DOPA-induced dyskinesia in Parkinson’s disease. [Research support, non-U.S. Gov’t]. Journal of Neurochemistry, 114(2), 499–511. doi:10.1111/j.1471-4159.2010.06776.x.

    CAS  PubMed  Google Scholar 

  • Kobylecki, C., Hill, M. P., Crossman, A. R., & Ravenscroft, P. (2011). Synergistic antidyskinetic effects of topiramate and amantadine in animal models of Parkinson’s disease. [Comparative study research support, non-U.S. Gov’t]. Movement Disorders, 26(13), 2354–2363. doi:10.1002/mds.23867.

    PubMed  Google Scholar 

  • Konitsiotis, S., Blanchet, P. J., Verhagen, L., Lamers, E., & Chase, T. N. (2000). AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. [Comparative study research support, non-U.S. Gov’t]. Neurology, 54(8), 1589–1595.

    CAS  PubMed  Google Scholar 

  • Kosinski, C. M., Risso Bradley, S., Conn, P. J., Levey, A. I., Landwehrmeyer, G. B., Penney, J. B., Jr., Young, A. B., & Standaert, D. G. (1999). Location of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. research support, U.S. Gov’t, P.H.S.]. The Journal of Comparative Neurology, 415(2), 266–284.

    CAS  PubMed  Google Scholar 

  • Kostandy, B. B. (2012). The role of glutamate in neuronal ischemic injury: The role of spark in fire. [Review]. Neurology of Science, 33(2), 223–237. doi:10.1007/s10072-011-0828-5.

    Google Scholar 

  • Koutsilieri, E., & Riederer, P. (2007). Excitotoxicity and new antiglutamatergic strategies in Parkinson's disease and Alzheimer's disease. [Review]. Parkinsonism &Related Disorders, 13(Suppl 3), S329–S331. doi:10.1016/S1353-8020(08)70025-7.

    Google Scholar 

  • Kuppenbender, K. D., Standaert, D. G., Feuerstein, T. J., Penney, J. B., Jr., Young, A. B., & Landwehrmeyer, G. B. (2000). Expression of NMDA receptor subunit mRNAs in neurochemically identified projection and interneurons in the human striatum. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. The Journal of Comparative Neurology, 419(4), 407–421.

    CAS  PubMed  Google Scholar 

  • Lange, K. W., Kornhuber, J., & Riederer, P. (1997). Dopamine/glutamate interactions in Parkinson’s disease. [Research support, non-U.S. Gov’t review]. Neuroscience & Biobehavioral Reviews, 21(4), 393–400.

    CAS  Google Scholar 

  • Lau, A., & Tymianski, M. (2010). Glutamate receptors, neurotoxicity and neurodegeneration. [Review]. Pflugers Archiv, 460(2), 525–542. doi:10.1007/s00424-010-0809-1.

    CAS  PubMed  Google Scholar 

  • Lavreysen, H., & Dautzenberg, F. M. (2008). Therapeutic potential of group III metabotropic glutamate receptors. [Review]. Current Medicinal Chemistry, 15(7), 671–684.

    CAS  PubMed  Google Scholar 

  • Lea, P. M. T., Movsesyan, V. A., & Faden, A. I. (2005). Neuroprotective activity of the mGluR5 antagonists MPEP and MTEP against acute excitotoxicity differs and does not reflect actions at mGluR5 receptors. [Comparative study research support, N.I.H., extramural research support, U.S. Gov't, non-P.H.S. research support, U.S. Gov't, P.H.S.]. British Journal of Pharmacology, 145(4), 527–534. doi:10.1038/sj.bjp.0706219.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leaver, K. R., Allbutt, H. N., Creber, N. J., Kassiou, M., & Henderson, J. M. (2008). Neuroprotective effects of a selective N-methyl-D-aspartate NR2B receptor antagonist in the 6-hydroxydopamine rat model of Parkinson’s disease. [Comparative study research support, non-U.S. Gov’t]. Clinical and Experimental Pharmacology and Physiology, 35(11), 1388–1394. doi:10.1111/j.1440-1681.2008.05046.x.

    CAS  PubMed  Google Scholar 

  • Lees, G. J. (2000). Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. [Research support, non-U.S. Gov’t review]. Drugs, 59(1), 33–78.

    CAS  PubMed  Google Scholar 

  • Li, P., & Zhuo, M. (1998). Silent glutamatergic synapses and nociception in mammalian spinal cord. [In vitro research support, U.S. Gov’t, P.H.S.]. Nature, 393(6686), 695–698. doi:10.1038/31496.

    CAS  PubMed  Google Scholar 

  • Liao, D., Hessler, N. A., & Malinow, R. (1995). Activation of post-synaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. [In vitro research support, U.S. Gov’t, P.H.S.]. Nature, 375(6530), 400–404. doi:10.1038/375400a0.

    CAS  PubMed  Google Scholar 

  • Lin, C. H., Lee, C. C., Huang, Y. C., Wang, S. J., & Gean, P. W. (2005). Activation of group II metabotropic glutamate receptors induces depotentiation in amygdala slices and reduces fear-potentiated startle in rats. [Comparative study in vitro research support, non-U.S. Gov’t]. Learning and Memory, 12(2), 130–137. doi:10.1101/lm.85304.

    PubMed Central  PubMed  Google Scholar 

  • Ling, W., Chang, L., Song, Y., Lu, T., Jiang, Y., Li, Y., & Wu, Y. (2012). Immunolocalization of NR1, NR2A, and PSD-95 in rat hippocampal subregions during postnatal development. [Research support, non-U.S. Gov’t]. Acta Histochemica, 114(3), 285–295. doi:10.1016/j.acthis.2011.06.005.

    CAS  PubMed  Google Scholar 

  • Liu, X. B., Munoz, A., & Jones, E. G. (1998). Changes in subcellular location of metabotropic glutamate receptor subtypes during postnatal development of mouse thalamus. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. The Journal of Comparative Neurology, 395(4), 450–465.

    CAS  PubMed  Google Scholar 

  • Lopez, S., Turle-Lorenzo, N., Acher, F., De Leonibus, E., Mele, A., & Amalric, M. (2007). Targeting group III metabotropic glutamate receptors produces complex behavioral effects in rodent models of Parkinson’s disease. [Comparative study research support, non-U.S. Gov’t]. Journal of Neuroscience, 27(25), 6701–6711. doi:10.1523/JNEUROSCI.0299-07.2007.

    CAS  PubMed  Google Scholar 

  • Lujan, R., Roberts, J. D., Shigemoto, R., Ohishi, H., & Somogyi, P. (1997). Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. [Research support, non-U.S. Gov’t]. Journal of Chemical Neuroanatomy, 13(4), 219–241.

    CAS  PubMed  Google Scholar 

  • Luscher, C., & Huber, K. M. (2010). Group 1 mGluR-dependent synaptic long-term depression: Mechanisms and implications for circuitry and disease. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Neuron, 65(4), 445–459. doi:10.1016/j.neuron.2010.01.016.

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacInnes, N., Messenger, M. J., & Duty, S. (2004). Activation of group III metabotropic glutamate receptors in selected regions of the basal ganglia alleviates akinesia in the reserpine-treated rat. [Comparative study research support, non-U.S. Gov’t]. British Journal of Pharmacology, 141(1), 15–22. doi:10.1038/sj.bjp.0705566.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makoff, A., Lelchuk, R., Oxer, M., Harrington, K., & Emson, P. (1996a). Molecular characterization and location of human metabotropic glutamate receptor type 4. Brain Research Molecular Brain Research, 37(1–2), 239–248.

    CAS  PubMed  Google Scholar 

  • Makoff, A., Volpe, F., Lelchuk, R., Harrington, K., & Emson, P. (1996b). Molecular characterization and location of human metabotropic glutamate receptor type 3. [Comparative study]. Brain Research Molecular Brain Research, 40(1), 55–63.

    CAS  PubMed  Google Scholar 

  • Marin, C., Jimenez, A., Bonastre, M., Chase, T. N., & Tolosa, E. (2000). Non-NMDA receptor-mediated mechanisms are involved in levodopa-induced motor response alterations in Parkinsonian rats. [Research support, non-U.S. Gov’t]. Synapse, 36(4), 267–274. doi:10.1002/(SICI)1098-2396(20000615)36:4<267::AID-SYN3>3.0.CO;2-Y.

    CAS  PubMed  Google Scholar 

  • Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R., & Nakanishi, S. (1991). Sequence and expression of a metabotropic glutamate receptor. [Comparative study research support, non-U.S. Gov’t]. Nature, 349(6312), 760–765. doi:10.1038/349760a0.

    CAS  PubMed  Google Scholar 

  • Matsui, T., & Kita, H. (2003). Activation of group III metabotropic glutamate receptors pre-synaptically reduces both GABAergic and glutamatergic transmission in the rat globus pallidus. [Comparative study in vitro research support, U.S. Gov’t, P.H.S.]. Neuroscience, 122(3), 727–737.

    CAS  PubMed  Google Scholar 

  • Mayer, M. L., & Armstrong, N. (2004). Structure and function of glutamate receptor ion channels. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S. review]. Annual Review of Physiology, 66, 161–181. doi:10.1146/annurev.physiol.66.050802.084104.

    CAS  PubMed  Google Scholar 

  • Merello, M., Nouzeilles, M. I., Cammarota, A., & Leiguarda, R. (1999). Effect of memantine (NMDA antagonist) on Parkinson’s disease: A double-blind crossover randomized study. [Clinical trial randomized controlled trial]. Clinical Neuropharmacology, 22(5), 273–276.

    CAS  PubMed  Google Scholar 

  • Mitsukawa, K., Yamamoto, R., Ofner, S., Nozulak, J., Pescott, O., Lukic, S., Stoehr, N., Mombereau, C., Kuhn, R., McAllister, K. H., van der Putten, H., Cryan, J. F., & Flor, P. J. (2005). A selective metabotropic glutamate receptor 7 agonist: activation of receptor signaling via an allosteric site modulates stress parameters in vivo. [Research support, N.I.H., extramural]. Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18712–18717. doi:10.1073/pnas.0508063102.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monaghan, D. T., Andaloro, V. J., & Skifter, D. A. (1998). Molecular determinants of NMDA receptor pharmacological diversity. [Review]. Progress in Brain Research, 116, 171–190.

    CAS  PubMed  Google Scholar 

  • Monaghan, D. T., & Jane, D. E. (2009). Pharmacology of NMDA receptors. In A. M. Van Dongen (Ed.), Biology of the NMDA receptor. Boca Raton: CRC Press.

    Google Scholar 

  • Murray, T. K., Messenger, M. J., Ward, M. A., Woodhouse, S., Osborne, D. J., Duty, S., & O’Neill, M. J. (2002). Evaluation of the mGluR2/3 agonist LY379268 in rodent models of Parkinson’s disease. Pharmacology Biochemistry & Behavior, 73(2), 455–466.

    CAS  Google Scholar 

  • Nawy, S. (2000). Regulation of the on bipolar cell mGluR6 pathway by Ca2+. [In vitro research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. Journal of Neuroscience, 20(12), 4471–4479.

    CAS  PubMed  Google Scholar 

  • Nicoletti, F., Bockaert, J., Collingridge, G. L., Conn, P. J., Ferraguti, F., Schoepp, D. D., Wroblewski, J. T., & Pin, J. P. (2011). Metabotropic glutamate receptors: From the workbench to the bedside. [Review]. Neuropharmacology, 60(7–8), 1017–1041. doi:10.1016/j.neuropharm.2010.10.022.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicoletti, F., Bruno, V., Catania, M. V., Battaglia, G., Copani, A., Barbagallo, G., Ceña, V., Sanchez-Prieto, J., Spano, P. F., & Pizzi, M. (1999). Group-I metabotropic glutamate receptors: Hypotheses to explain their dual role in neurotoxicity and neuroprotection. [Research support, non-U.S. Gov't review]. Neuropharmacology, 38(10), 1477–1484.

    CAS  PubMed  Google Scholar 

  • Niswender, C. M., & Conn, P. J. (2010). Metabotropic glutamate receptors: Physiology, pharmacology, and disease. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. The Annual Review of Pharmacology and Toxicology, 50, 295–322. doi:10.1146/annurev.pharmtox.011008.145533.

    CAS  Google Scholar 

  • Niswender, C. M., Johnson, K. A., Weaver, C. D., Jones, C. K., Xiang, Z., Luo, Q., Rodriguez, A. L., Marlo, J. E., de Paulis, T., Thompson, A. D., Days, E. L., Nalywajko, T., Austin, C. A., Williams, M. B., Ayala, J. E., Williams, R., Lindsley, C. W., & Conn, P. J. (2008). Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. [In vitro research support, N.I.H., extramural research support, non-U.S. Gov't]. Molecular Pharmacology, 74(5), 1345–1358. doi:10.1124/mol.108.049551.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., & Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. [Research support, non-U.S. Gov’t]. Nature, 307(5950), 462–465.

    CAS  PubMed  Google Scholar 

  • O’Neill, M. J., Bleakman, D., Zimmerman, D. M., & Nisenbaum, E. S. (2004). AMPA receptor potentiators for the treatment of CNS disorders. [Review]. Current Drug Targets. CNS and Neurological Disorders, 3(3), 181–194.

    PubMed  Google Scholar 

  • O’Neill, M. J., & Witkin, J. M. (2007). AMPA receptor potentiators: Application for depression and Parkinson’s disease. [Review]. Current Drug Targets, 8(5), 603–620.

    PubMed  Google Scholar 

  • Ohishi, H., Shigemoto, R., Nakanishi, S., & Mizuno, N. (1993a). Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. [In vitro research support, non-U.S. Gov’t]. Neuroscience, 53(4), 1009–1018.

    CAS  PubMed  Google Scholar 

  • Ohishi, H., Shigemoto, R., Nakanishi, S., & Mizuno, N. (1993b). Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: An in situ hybridization study. [Research support, non-U.S. Gov’t]. The Journal of Comparative Neurology, 335(2), 252–266. doi:10.1002/cne.903350209.

    CAS  PubMed  Google Scholar 

  • Ondrejcak, T., Klyubin, I., Hu, N. W., Barry, A. E., Cullen, W. K., & Rowan, M. J. (2010). Alzheimer’s disease amyloid beta-protein and synaptic function. [Research support, non-U.S. Gov’t review]. Neuromolecular Medicine, 12(1), 13–26. doi:10.1007/s12017-009-8091-0.

    CAS  PubMed  Google Scholar 

  • Ossowska, K., Konieczny, J., Wolfarth, S., Wieronska, J., & Pilc, A. (2001). Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. [Research support, non-U.S. Gov’t]. Neuropharmacology, 41(4), 413–420.

    CAS  PubMed  Google Scholar 

  • Palop, J. J., & Mucke, L. (2010a). Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Nature Neuroscience, 13(7), 812–818. doi:10.1038/nn.2583.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palop, J. J., & Mucke, L. (2010b). Synaptic depression and aberrant excitatory network activity in Alzheimer’s disease: Two faces of the same coin? [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Neuromolecular Medicine, 12(1), 48–55. doi:10.1007/s12017-009-8097-7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palucha, A., Klak, K., Branski, P., van der Putten, H., Flor, P. J., & Pilc, A. (2007). Activation of the mGlu7 receptor elicits antidepressant-like effects in mice. [Research support, non-U.S. Gov’t]. Psychopharmacology (Berl), 194(4), 555–562. doi:10.1007/s00213-007-0856-2.

    CAS  Google Scholar 

  • Papadia, S., Stevenson, P., Hardingham, N. R., Bading, H., & Hardingham, G. E. (2005). Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. [Comparative study in vitro research support, non-U.S. Gov’t]. Journal of Neuroscience, 25(17), 4279–4287. doi:10.1523/JNEUROSCI.5019-04.2005.

    CAS  PubMed  Google Scholar 

  • Park, E., Liu, Y., & Fehlings, M. G. (2003). Changes in glial cell white matter AMPA receptor expression after spinal cord injury and relationship to apoptotic cell death. [Research support, non-U.S. Gov’t]. Experimental Neurology, 182(1), 35–48.

    CAS  PubMed  Google Scholar 

  • Pellegrini-Giampietro, D. E. (2003). The distinct role of mGlu1 receptors in post-ischemic neuronal death. [Review]. Trends in Pharmacological Sciences, 24(9), 461–470. doi:10.1016/S0165-6147(03)00231-1.

    CAS  PubMed  Google Scholar 

  • Perier, C., Tremblay, L., Feger, J., & Hirsch, E. C. (2002). Behavioral consequences of bicuculline injection in the subthalamic nucleus and the zona incerta in rat. [Research support, non-U.S. Gov’t]. Journal of Neuroscience, 22(19), 8711–8719.

    CAS  PubMed  Google Scholar 

  • Pin, J. P., & Acher, F. (2002). The metabotropic glutamate receptors: Structure, activation mechanism and pharmacology. [Review]. Current Drug Targets. CNS and Neurological Disorders, 1(3), 297–317.

    CAS  PubMed  Google Scholar 

  • Pin, J. P., & Duvoisin, R. (1995). The metabotropic glutamate receptors: Structure and functions. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S. review]. Neuropharmacology, 34(1), 1–26.

    CAS  PubMed  Google Scholar 

  • Pisani, A., Bonsi, P., Centonze, D., Bernardi, G., & Calabresi, P. (2001). Functional coexpression of excitatory mGluR1 and mGluR5 on striatal cholinergic interneurons. [In vitro research support, non-U.S. Gov’t]. Neuropharmacology, 40(3), 460–463.

    CAS  PubMed  Google Scholar 

  • Popoli, P., Pintor, A., Tebano, M. T., Frank, C., Pepponi, R., Nazzicone, V., Grieco, R., Pèzzola, A., Reggio, R., Minghetti, L., De Berardinis, M. A., Martire, A., Potenza, R. L., Domenici, M. R., & Massotti, M. (2004). Neuroprotective effects of the mGlu5R antagonist MPEP towards quinolinic acid-induced striatal toxicity: Involvement of pre- and post-synaptic mechanisms and lack of direct NMDA blocking activity. [Research support, non-U.S. Gov't]. Journal of Neurochemistry, 89(6), 1479–1489. doi:10.1111/j.1471-4159.2004.02448.x.

    CAS  PubMed  Google Scholar 

  • Randall, A. D., Witton, J., Booth, C., Hynes-Allen, A., & Brown, J. T. (2010). The functional neurophysiology of the amyloid precursor protein (APP) processing pathway. [Review]. Neuropharmacology, 59(4–5), 243–267. doi:10.1016/j.neuropharm.2010.02.011.

    CAS  PubMed  Google Scholar 

  • Rao, A. M., Hatcher, J. F., & Dempsey, R. J. (2000). Neuroprotection by group I metabotropic glutamate receptor antagonists in forebrain ischemia of gerbil. [Research support, non-U.S. Gov’t]. Neuroscience Letter, 293(1), 1–4.

    CAS  Google Scholar 

  • Riederer, P., Reichmann, H., Janetzky, B., Sian, J., Lesch, K. P., Lange, K. W., Double, K. L., Nagatsu, T., & Gerlach, M. (2001). Neural degeneration in Parkinson's disease. [Review]. Advances in Neurology, 86, 125–136.

    CAS  PubMed  Google Scholar 

  • Rodriguez, M. C., Obeso, J. A., & Olanow, C. W. (1998). Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: A target for neuroprotection. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S. review]. Annals of Neurology, 44(3 Suppl 1), S175–S188.

    CAS  PubMed  Google Scholar 

  • Rossi, P. I., Vaccari, C. M., Terracciano, A., Doria-Lamba, L., Facchinetti, S., Priolo, M., Ayuso, C., De Jorge, L., Gimelli, S., Santorelli, F. M., Ravazzolo, R., & Puliti, A. (2010). The metabotropic glutamate receptor 1, GRM1: Evaluation as a candidate gene for inherited forms of cerebellar ataxia. [Multicenter study research support, non-U.S. Gov't]. Journal of Neurology, 257(4), 598–602. doi:10.1007/s00415-009-5380-3.

    CAS  PubMed  Google Scholar 

  • Rouse, S. T., Marino, M. J., Bradley, S. R., Awad, H., Wittmann, M., & Conn, P. J. (2000). Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: Implications for treatment of Parkinson’s disease and related disorders. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. research support, U.S. Gov’t, P.H.S. review]. Pharmacology & Therapeutics, 88(3), 427–435.

    CAS  Google Scholar 

  • Sachs, A. J., Schwendinger, J. K., Yang, A. W., Haider, N. B., & Nystuen, A. M. (2007). The mouse mutants recoil wobbler and nmf373 represent a series of Grm1 mutations. [Research support, N.I.H., extramural]. Mammalian Genome, 18(11), 749–756. doi:10.1007/s00335-007-9064-y.

    CAS  PubMed  Google Scholar 

  • Salling, M. C., Faccidomo, S., & Hodge, C. W. (2008). Nonselective suppression of operant ethanol and sucrose self-administration by the mGluR7 positive allosteric modulator AMN082. [Research support, N.I.H., extramural]. Pharmacology Biochemistry & Behavior, 91(1), 14–20. doi:10.1016/j.pbb.2008.06.006.

    CAS  Google Scholar 

  • Sanchez-Pernaute, R., Wang, J. Q., Kuruppu, D., Cao, L., Tueckmantel, W., Kozikowski, A., Isacson, O., & Brownell, A. L. (2008). Enhanced binding of metabotropic glutamate receptor type 5 (mGluR5) PET tracers in the brain of parkinsonian primates. [Research support, N.I.H., extramural]. Neuroimage, 42(1), 248–251. doi:10.1016/j.neuroimage.2008.04.170.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santos, S. D., Carvalho, A. L., Caldeira, M. V., & Duarte, C. B. (2009). Regulation of AMPA receptors and synaptic plasticity. [Research support, non-U.S. Gov’t review]. Neuroscience, 158(1), 105–125. doi:10.1016/j.neuroscience.2008.02.037.

    CAS  PubMed  Google Scholar 

  • Schapira, A. H. (2009). Neurobiology and treatment of Parkinson’s disease. [Review]. Trends in Pharmacological Sciences, 30(1), 41–47. doi:10.1016/j.tips.2008.10.005.

    CAS  PubMed  Google Scholar 

  • Schoepp, D. D., Jane, D. E., & Monn, J. A. (1999). Pharmacological agents acting at subtypes of metabotropic glutamate receptors. [Review]. Neuropharmacology, 38(10), 1431–1476.

    CAS  PubMed  Google Scholar 

  • Scott, H. L., Braud, S., Bannister, N. J., & Isaac, J. T. (2007). Synaptic strength at the thalamocortical input to layer IV neonatal barrel cortex is regulated by protein kinase C. [In vitro research support, N.I.H., intramural research support, non-U.S. Gov’t]. Neuropharmacology, 52(1), 185–192. doi:10.1016/j.neuropharm.2006.06.016.

    CAS  PubMed  Google Scholar 

  • Sgambato-Faure, V., & Cenci, M. A. (2012). Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. [Review]. Progress in Neurobiology, 96(1), 69–86. doi:10.1016/j.pneurobio.2011.10.005.

    CAS  PubMed  Google Scholar 

  • Silverdale, M. A., Nicholson, S. L., Crossman, A. R., & Brotchie, J. M. (2005). Topiramate reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson’s disease. [Research support, non-U.S. Gov’t]. Movement Disorders, 20(4), 403–409. doi:10.1002/mds.20345.

    PubMed  Google Scholar 

  • Smialowska, M., Golembiowska, K., Kajta, M., Zieba, B., Dziubina, A., & Domin, H. (2012). Selective mGluR1 antagonist EMQMCM inhibits the kainate-induced excitotoxicity in primary neuronal cultures and in the rat hippocampus. [Research support, non-U.S. Gov’t]. Neurotoxicity Research, 21(4), 379–392. doi:10.1007/s12640-011-9293-4.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tallaksen-Greene, S. J., Kaatz, K. W., Romano, C., & Albin, R. L. (1998). Location of mGluR1a-like immunoreactivity and mGluR5-like immunoreactivity in identified populations of striatal neurons. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. Brain Research, 780(2), 210–217.

    CAS  PubMed  Google Scholar 

  • Tamaru, Y., Nomura, S., Mizuno, N., & Shigemoto, R. (2001). Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: Differential location relative to pre- and post-synaptic sites. [Research support, non-U.S. Gov’t]. Neuroscience, 106(3), 481–503.

    CAS  PubMed  Google Scholar 

  • Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. K., Hansen, K. B., Yuan, H., Myers, S. J., & Dingledine, R. (2010). Glutamate receptor ion channels: Structure, regulation, and function. [Research support, N.I.H., extramural research support, non-U.S. Gov't review]. Pharmacological Reviews, 62(3), 405–496. doi:10.1124/pr.109.002451.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai, G., & Coyle, J. T. (2002). Glutamatergic mechanisms in schizophrenia. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S. review]. Annual Review of Pharmacology and Toxicology, 42, 165–179. doi:10.1146/annurev.pharmtox.42.082701.160735.

    CAS  PubMed  Google Scholar 

  • Valenti, O., Mannaioni, G., Seabrook, G. R., Conn, P. J., & Marino, M. J. (2005). Group III metabotropic glutamate-receptor-mediated modulation of excitatory transmission in rodent substantia nigra pars compacta dopamine neurons. Journal of Pharmacology and Experimental Therapeutics, 313(3), 1296–1304. doi:10.1124/jpet.104.080481.

    CAS  PubMed  Google Scholar 

  • Valenti, O., Marino, M. J., Wittmann, M., Lis, E., DiLella, A. G., Kinney, G. G., & Conn, P. J. (2003). Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. [In vitro research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. Journal of Neuroscience, 23(18), 7218–7226.

    CAS  PubMed  Google Scholar 

  • Varanese, S., Howard, J., & Di Rocco, A. (2010). NMDA antagonist memantine improves levodopa-induced dyskinesias and “on-off” phenomena in Parkinson’s disease. [Case reports Letter]. Movement Disorders, 25(4), 508–510. doi:10.1002/mds.22917.

    PubMed  Google Scholar 

  • Vardi, N., Duvoisin, R., Wu, G., & Sterling, P. (2000). Location of mGluR6 to dendrites of ON bipolar cells in primate retina. [Research support, U.S. Gov’t, P.H.S.]. The Journal of Comparative Neurology, 423(3), 402–412.

    CAS  PubMed  Google Scholar 

  • Vera, G., & Tapia, R. (2012). Activation of group III metabotropic glutamate receptors by endogenous glutamate protects against glutamate-mediated excitotoxicity in the hippocampus in vivo. [Research support, non-U.S. Gov’t]. Journal of Neuroscience Research, 90(5), 1055–1066. doi:10.1002/jnr.23006.

    CAS  PubMed  Google Scholar 

  • Wang, S. J., & Gean, P. W. (1999). Long-term depression of excitatory synaptic transmission in the rat amygdala. [In vitro research support, non-U.S. Gov’t]. Journal of Neuroscience, 19(24), 10656–10663.

    CAS  PubMed  Google Scholar 

  • Waxman, E. A., Baconguis, I., Lynch, D. R., & Robinson, M. B. (2007). N-methyl-D-aspartate receptor-dependent regulation of the glutamate transporter excitatory amino acid carrier 1. [Research support, N.I.H., extramural]. The Journal of Biological Chemistry, 282(24), 17594–17607. doi:10.1074/jbc.M702278200.

    CAS  PubMed  Google Scholar 

  • Waxman, E. A., & Lynch, D. R. (2005). N-methyl-D-aspartate receptor subtype mediated bidirectional control of p38 mitogen-activated protein kinase. [Research support, N.I.H., extramural research support, U.S. Gov’t, P.H.S.]. The Journal of Biological Chemistry, 280(32), 29322–29333. doi:10.1074/jbc.M502080200.

    CAS  PubMed  Google Scholar 

  • Wigmore, M. A., & Lacey, M. G. (1998). Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro. [In vitro research support, non-U.S. Gov’t]. British Journal of Pharmacology, 123(4), 667–674. doi:10.1038/sj.bjp.0701662.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wittmann, M., Marino, M. J., Bradley, S. R., & Conn, P. J. (2001). Activation of group III mGluRs inhibits GABAergic and glutamatergic transmission in the substantia nigra pars reticulata. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. The Journal of Neurophysiology, 85(5), 1960–1968.

    CAS  Google Scholar 

  • Xu, Y., Dhingra, A., Fina, M. E., Koike, C., Furukawa, T., & Vardi, N. (2012). mGluR6 deletion renders the TRPM1 channel in retina inactive. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. The Journal of Neurophysiology, 107(3), 948–957. doi:10.1152/jn.00933.2011.

    CAS  Google Scholar 

  • Yamada, K., & Nabeshima, T. (1998). Changes in NMDA receptor/nitric oxide signaling pathway in the brain with aging. [Review]. Microscopy Research and Technique, 43(1), 68–74. doi:10.1002/(SICI)1097-0029(19981001)43:1<68::AID-JEMT10>3.0.CO;2-W.

    CAS  PubMed  Google Scholar 

  • Zhang, Q. G., Han, D., Hu, S. Q., Li, C., Yu, C. Z., Wang, R., & Zhang, G. Y. (2010). Positive modulation of AMPA receptors prevents downregulation of GluR2 expression and activates the Lyn-ERK1/2-CREB signaling in rat brain ischemia. [Research support, non-U.S. Gov’t]. Hippocampus, 20(1), 65–77. doi:10.1002/hipo.20593.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the support by grants from the Spanish Ministry of Science (FIS 2010–02827), Fundación Séneca (FS/15329/PI/10), and CIBERNED (Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas). Finally, the authors declare that there is no conflict of interests in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Herrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Sampedro, A. et al. (2014). Glutamatergic Receptors in Parkinson’s Disease. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_154

Download citation

Publish with us

Policies and ethics