Skip to main content
Log in

Roles of centromedian parafascicular nuclei of thalamus and cholinergic interneurons in the dorsal striatum in associative learning of environmental events

  • Translational Neurosciences - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The thalamus provides a massive input to the striatum, but despite accumulating evidence, the functions of this system remain unclear. It is known, however, that the centromedian (CM) and parafascicular (Pf) nuclei of the thalamus can strongly influence particular striatal neuron subtypes, notably including the cholinergic interneurons of the striatum (CINs), key regulators of striatal function. Here, we highlight the thalamostriatal system through the CM–Pf to striatal CINs. We consider how, by virtue of the direct synaptic connections of the CM and PF, their neural activity contributes to the activity of CINs and striatal projection neurons (SPNs). CM–Pf neurons are strongly activated at sudden changes in behavioral context, such as switches in action–outcome contingency or sequence of behavioral requirements, suggesting that their activity may represent change of context operationalized as associability. Striatal CINs, on the other hand, acquire and loose responses to external events associated with particular contexts. In light of this physiological evidence, we propose a hypothesis of the CM–Pf–CINs system, suggesting that it augments associative learning by generating an associability signal and promotes reinforcement learning guided by reward prediction error signals from dopamine-containing neurons. We discuss neuronal circuit and synaptic organizations based on in vivo/in vitro studies that we suppose to underlie our hypothesis. Possible implications of CM–Pf–CINs dysfunction (or degeneration) in brain diseases are also discussed by focusing on Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akins PT, Surmeier DJ, Kitai ST (1990) M1 muscarinic acetylcholine receptor in cultured rat neostriatum regulates phosphoinositide hydrolysis. J Neurochem 54:266–273

    Article  CAS  PubMed  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    Article  CAS  PubMed  Google Scholar 

  • Aoki S, Liu AW, Zucca A, Zucca S, Wickens JR (2015) Role of striatal cholinergic interneurons in set-shifting in the rat. J Neurosci 35:9424–9431

    Article  CAS  PubMed  Google Scholar 

  • Aosaki T, Tsubokawa H, Ishida A, Watanabe K, Graybiel AM, Kimura M (1994) Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. J Neurosci 14:3969–3984

    CAS  PubMed  Google Scholar 

  • Aosaki T, Kimura M, Graybiel AM (1995) Temporal and spatial characteristics of tonically active neurons of the primate’s striatum. J Neurophysiol 73:1234–1252

    Article  CAS  PubMed  Google Scholar 

  • Apicella P (2007) Leading tonically active neurons of the striatum from reward detection to context recognition. Trends Neurosci 30:299–306

    Article  CAS  PubMed  Google Scholar 

  • Apicella P, Scarnati E, Schultz W (1991) Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli. Exp Brain Res 84:672–675

    Article  CAS  PubMed  Google Scholar 

  • Apicella P, Ravel S, Deffains M, Legallet E (2011) The role of striatal tonically active neurons in reward prediction error signaling during instrumental task performance. J Neurosci 31:1507–1515

    Article  CAS  PubMed  Google Scholar 

  • Atallah HE, McCool AD, Howe MW, Graybiel AM (2014) Neurons in the ventral striatum exhibit cell-type-specific representations of outcome during learning. Neuron 82:1145–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer HM, Glimcher PW (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett BD, Wilson CJ (1999) Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci 19:5586–5596

    CAS  PubMed  Google Scholar 

  • Bernard V, Normand E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–3600

    CAS  PubMed  Google Scholar 

  • Blazquez PM, Fujii N, Kojima J, Graybiel AM (2002) A network representation of response probability in the striatum. Neuron 33:973–982

    Article  CAS  PubMed  Google Scholar 

  • Bolam JP, Wainer BH, Smith AD (1984) Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience 12:711–718

    Article  CAS  PubMed  Google Scholar 

  • Bradfield LA, Bertran-Gonzalez J, Chieng B, Balleine BW (2013) The thalamostriatal pathway and cholinergic control of goal-directed action: interlacing new with existing learning in the striatum. Neuron 79:153–166

    Article  CAS  PubMed  Google Scholar 

  • Brown HD, Baker PM, Ragozzino ME (2010) The parafascicular thalamic nucleus concomitantly influences behavioral flexibility and dorsomedial striatal acetylcholine output in rats. J Neurosci 30:14390–14398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buelow MT, Amick MM, Queller S, Stout JC, Friedman JH, Grace J (2015) Feasibility of use of probabilistic reversal learning and serial reaction time tasks in clinical trials of Parkinson’s disease. Parkinsonism Relat Disord 21:894–898

    Article  PubMed  Google Scholar 

  • Butts DA (2003) How much information is associated with a particular stimulus? Netw Comput Neural Syst 14:177–187

    Article  Google Scholar 

  • Calabresi P, Centonze D, Pisani A, Sancesario G, North RA, Bernardi G (1998) Muscarinic IPSPs in rat striatal cholinergic interneurones. J Physiol 510(Pt 2):421–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30:211

    Article  CAS  PubMed  Google Scholar 

  • Crittenden JR, Graybiel AM (2011) Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Crittenden JR, Graybiel AM (2016) Disease-associated changes in the striosome and matrix compartments of the dorsal striatum. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Elsevier, Amsterdam, pp 801–821

    Google Scholar 

  • Crittenden JR, Lacey CJ, Feng-Ju Weng E, Garrison CA, Lin Y, Graybiel AM (2017) Striatal cholinergic interneurons modulate spike-timing in striosomes and matrix by an amphetamine-sensitive mechanism Frontiers in Neuroanatomy (in press)

  • Ding J, Guzman JN, Tkatch T, Chen S, Goldberg JA, Ebert PJ, Levitt P, Wilson CJ, Hamm HE, Surmeier DJ (2006) RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat Neurosci 9:832–842

    Article  CAS  PubMed  Google Scholar 

  • Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci 30:14610–14618

    Article  CAS  PubMed  Google Scholar 

  • Doig NM, Magill PJ, Apicella P, Bolam JP, Sharott A (2014) Cortical and thalamic excitation mediate the multiphasic responses of striatal cholinergic interneurons to motivationally salient stimuli. J Neurosci 34:3101–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doya K (2000) Reinforcement learning in continuous time and space. Neural Comput 12:219–245

    Article  CAS  PubMed  Google Scholar 

  • Ellender TJ, Harwood J, Kosillo P, Capogna M, Bolam JP (2013) Heterogeneous properties of central lateral and parafascicular thalamic synapses in the striatum. J Physiol 591:257–272

    Article  CAS  PubMed  Google Scholar 

  • Enomoto K, Matsumoto N, Nakai S, Satoh T, Sato TK, Ueda Y, Inokawa H, Haruno M, Kimura M (2011) Dopamine neurons learn to encode the long-term value of multiple future rewards. Proc Natl Acad Sci USA 108:15462–15467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faust TW, Assous M, Shah F, Tepper JM, Koos T (2015) Novel fast adapting interneurons mediate cholinergic-induced fast GABAA inhibitory postsynaptic currents in striatal spiny neurons. Eur J Neurosci 42:1764–1774

    Article  PubMed  PubMed Central  Google Scholar 

  • Faust TW, Assous M, Tepper JM, Koos T (2016) Neostriatal GABAergic interneurons mediate cholinergic inhibition of spiny projection neurons. J Neurosci 36:9505–9511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman A, Homma D, Gibb LG, Amemori K, Rubin SJ, Hood AS, Riad MH, Graybiel AM (2015) A corticostriatal path targeting striosomes controls decision-making under conflict. Cell 161:1320–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiyama F, Unzai T, Nakamura K, Nomura S, Kaneko T (2006) Difference in organization of corticostriatal and thalamostriatal synapses between patch and matrix compartments of rat neostriatum. Eur J Neurosci 24:2813–2824

    Article  PubMed  Google Scholar 

  • Galarraga E, Hernandez-Lopez S, Reyes A, Miranda I, Bermudez-Rattoni F, Vilchis C, Bargas J (1999) Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J Neurosci 19:3629–3638

    CAS  PubMed  Google Scholar 

  • Galvan A, Smith Y (2011) The primate thalamostriatal systems: anatomical organization, functional roles and possible involvement in Parkinson’s disease. Basal Ganglia 1:179–189

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerdeman GL, Ronesi J, Lovinger DM (2002) Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5:446–451

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 311:461–464

    Article  CAS  PubMed  Google Scholar 

  • Girasole AE, Nelson AB (2015) Bridging the gap: muscarinic M4 receptors promote striatal plasticity in health and disease. Neuron 88:621–623

    Article  CAS  PubMed  Google Scholar 

  • Glascher J, Daw N, Dayan P, O’Doherty JP (2010) States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron 66:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glimcher PW, Lau B (2005) Rethinking the thalamus. Nat Neurosci 8:983–984

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JA, Reynolds JN (2011) Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience 198:27–43

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JA, Ding JB, Surmeier DJ (2012) Muscarinic modulation of striatal function and circuitry. Handb Exp Pharmacol 208:223–241

    Article  CAS  Google Scholar 

  • Gonzales KK, Pare JF, Wichmann T, Smith Y (2013) GABAergic inputs from direct and indirect striatal projection neurons onto cholinergic interneurons in the primate putamen. J Comp Neurol 521:2502–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graybiel AM (2008) Habits, rituals, and the evaluative brain. Annu Rev Neurosci 31:359–387

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci USA 75:5723–5726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graybiel AM, Baughman RW, Eckenstein F (1986) Cholinergic neuropil of the striatum observes striosomal boundaries. Nature 323:625–627

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265:1826–1831

    Article  CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Berendse HW (1994) The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57

    Article  CAS  PubMed  Google Scholar 

  • Haber S, McFarland NR (2001) The place of the thalamus in frontal cortical-basal ganglia circuits. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 7:315–324

    CAS  Google Scholar 

  • Halliday G, Lees A, Stern M (2011) Milestones in Parkinson’s disease–clinical and pathologic features. Mov Disord Off J Mov Disord Soc 26:1015–1021

    Article  Google Scholar 

  • Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000) Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson’s disease: clinical and therapeutic implications. Brain 123(Pt 7):1410–1421

    Article  PubMed  Google Scholar 

  • Henderson JM, Schleimer SB, Allbutt H, Dabholkar V, Abela D, Jovic J, Quinlivan M (2005) Behavioural effects of parafascicular thalamic lesions in an animal model of parkinsonism. Behav Brain Res 162:222–232

    Article  CAS  PubMed  Google Scholar 

  • Hori Y, Minamimoto T, Kimura M (2009) Neuronal encoding of reward value and direction of actions in the primate putamen. J Neurophysiol 102:3530–3543

    Article  PubMed  Google Scholar 

  • Houk JC, Adams JL, Barto AG (1995) A model of how the basal ganglia generate and use neural signals that predict reinforcement. In: Houk JC et al (eds) Models of information processing in the Basal Ganglia. The MIT Press, Cambridge, pp 249–270

    Google Scholar 

  • Huerta-Ocampo I, Mena-Segovia J, Bolam JP (2014) Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Struct Funct 219:1787–1800

    Article  PubMed  Google Scholar 

  • Inokawa H, Yamada H, Matsumoto N, Muranishi M, Kimura M (2010) Juxtacellular labeling of tonically active neurons and phasically active neurons in the rat striatum. Neuroscience 168:395–404

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Kuramochi M, Kobayashi K, Fukabori R, Okada K, Uchigashima M, Watanabe M, Tsutsui Y (2011) Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual discrimination. J Neurosci 31:17169–17179

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Rajkowski J, Evarts E (1984) Tonically discharging putamen neurons exhibit set-dependent responses. Proc Natl Acad Sci USA 81:4998–5001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Morita S, Sawada H, Mizuguchi T, Yamada K, Nagatsu I, Fujita K, Kreitman RJ, Pastan I, Nagatsu T (1995) Immunotoxin-mediated conditional disruption of specific neurons in transgenic mice. Proc Natl Acad Sci USA 92:1132–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreitzer AC, Malenka RC (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 445:643–647

    Article  CAS  PubMed  Google Scholar 

  • Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60:543–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacey CJ, Bolam JP, Magill PJ (2007) Novel and distinct operational principles of intralaminar thalamic neurons and their striatal projections. J Neurosci 27:4374–4384

    Article  CAS  PubMed  Google Scholar 

  • Lapper SR, Smith Y, Sadikot AF, Parent A, Bolam JP (1992) Cortical input to parvalbumin-immunoreactive neurones in the putamen of the squirrel monkey. Brain Res 580:215–224

    Article  CAS  PubMed  Google Scholar 

  • Lau B, Glimcher PW (2008) Value representations in the primate caudate nucleus during matching behavior. Neuron 58:451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leong YC, Radulescu A, Daniel R, DeWoskin V, Niv Y (2017) Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron 93:451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macchi G, Bentivoglio M, Molinari M, Minciacchi D (1984) The thalamo-caudate versus thalamo-cortical projections as studied in the cat with fluorescent retrograde double labeling. Exp Brain Res 54:225–239

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh NJ (1975) A theory of attention: variations in the associability of stimuli with reinforcement. Psychol Rev 82:276–298

    Article  Google Scholar 

  • Mamaligas AA, Ford CP (2016) Spontaneous synaptic activation of muscarinic receptors by striatal cholinergic neuron firing. Neuron 91:574–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matamales M, Skrbis Z, Hatch RJ, Balleine BW, Gotz J, Bertran-Gonzalez J (2016) Aging-related dysfunction of striatal cholinergic interneurons produces conflict in action selection. Neuron 90:362–373

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto N, Minamimoto T, Graybiel AM, Kimura M (2001) Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J Neurophysiol 85:960–976

    Article  CAS  PubMed  Google Scholar 

  • Maurice N, Mercer J, Chan CS, Hernandez-Lopez S, Held J, Tkatch T, Surmeier DJ (2004) D2 dopamine receptor-mediated modulation of voltage-dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons. J Neurosci 24:10289–10301

    Article  CAS  PubMed  Google Scholar 

  • McGuire JT, Nassar MR, Gold JI, Kable JW (2014) Functionally dissociable influences on learning rate in a dynamic environment. Neuron 84:870–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M Mennemeier, B Crosson, D.J Williamson, S.E Nadeau, E Fennell, E Valenstein, K.M Heilman (1997) Tapping, talking and the thalamus: possible influence of the intralaminar nuclei on basal ganglia function. Neuropsychologia 35(2):183–193

    Article  CAS  PubMed  Google Scholar 

  • Minamimoto T, Kimura M (2002) Participation of the thalamic CM-Pf complex in attentional orienting. J Neurophysiol 87:3090–3101

    Article  PubMed  Google Scholar 

  • Minamimoto T, Hori Y, Kimura M (2005) Complementary process to response bias in the centromedian nucleus of the thalamus. Science 308:1798–1801

    Article  CAS  PubMed  Google Scholar 

  • Minamimoto T, Hori Y, Kimura M (2009) Roles of the thalamic CM-PF complex-Basal ganglia circuit in externally driven rebias of action. Brain Res Bull 78:75–79

    Article  PubMed  Google Scholar 

  • Minamimoto T, Hori Y, Yamanaka K, Kimura M (2014) Neural signal for counteracting pre-action bias in the centromedian thalamic nucleus. Front Syst Neurosci 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947

    CAS  PubMed  Google Scholar 

  • Morris G, Arkadir D, Nevet A, Vaadia E, Bergman H (2004) Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 43:133–143

    Article  CAS  PubMed  Google Scholar 

  • Nakahara H, Itoh H, Kawagoe R, Takikawa Y, Hikosaka O (2004) Dopamine neurons can represent context-dependent prediction error. Neuron 41:269–280

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Nishizawa K, Fukabori R, Kai N, Shiota A, Ueda M, Tsutsui Y, Sakata S, Matsushita N, Kobayashi K (2014) Enhanced flexibility of place discrimination learning by targeting striatal cholinergic interneurons. Nat Commun 5:3778

    Article  CAS  PubMed  Google Scholar 

  • Parker PR, Lalive AL, Kreitzer AC (2016) Pathway-specific remodeling of thalamostriatal synapses in Parkinsonian mice. Neuron 89:734–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pashler H (1998) The psychology of attention. The MIT Press, Cambridge, p 494

    Google Scholar 

  • Pearce JM, Hall G (1980) A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev 87:532–552

    Article  CAS  PubMed  Google Scholar 

  • Perez-Rosello T, Figueroa A, Salgado H, Vilchis C, Tecuapetla F, Guzman JN, Galarraga E, Bargas J (2005) Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2+ channels. J Neurophysiol 93:2507–2519

    Article  CAS  PubMed  Google Scholar 

  • Peterson DA, Elliott C, Song DD, Makeig S, Sejnowski TJ, Poizner H (2009) Probabilistic reversal learning is impaired in Parkinson’s disease. Neuroscience 163:1092–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragsdale CW Jr, Graybiel AM (1991) Compartmental organization of the thalamostriatal connection in the cat. J Comp Neurol 311:134–167

    Article  PubMed  Google Scholar 

  • Raz A, Feingold A, Zelanskaya V, Vaadia E, Bergman H (1996) Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. J Neurophysiol 76:2083–2088

    Article  CAS  PubMed  Google Scholar 

  • Rescorla RA, Wagner AR (1972) Current research and theory. In: Black AH, Prokasy WF (eds) Classical conditioning II. Appleton Century Crofts, New York, pp 64–99

    Google Scholar 

  • Reynolds JN, Hyland BI, Wickens JR (2001) A cellular mechanism of reward-related learning. Nature 413:67–70

    Article  CAS  PubMed  Google Scholar 

  • Rice ME, Patel JC, Cragg SJ (2011) Dopamine release in the basal ganglia. Neuroscience 198:112–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roesch MR, Calu DJ, Esber GR, Schoenbaum G (2010) Neural correlates of variations in event processing during learning in basolateral amygdala. J Neurosci 30:2464–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roesch MR, Esber GR, Li J, Daw ND, Schoenbaum G (2012) Surprise! Neural correlates of Pearce-Hall and Rescorla-Wagner coexist within the brain. Eur J Neurosci 35:1190–1200

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadikot AF, Parent A, Francois C (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315:137–159

    Article  CAS  PubMed  Google Scholar 

  • Samejima K, Ueda Y, Doya K, Kimura M (2005) Representation of action-specific reward values in the striatum. Science 310:1337–1340

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Nakai S, Sato T, Kimura M (2003) Correlated coding of motivation and outcome of decision by dopamine neurons. J Neurosci 23:9913–9923

    CAS  PubMed  Google Scholar 

  • Schultz W (1998a) The phasic reward signal of primate dopamine neurons. Adv Pharmacol 42:686–690

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (1998b) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    Article  CAS  PubMed  Google Scholar 

  • Schultz W, Dickinson A (2000) Neuronal coding of prediction errors. Annu Rev Neurosci 23:473–500

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Hamilton SE, Nathanson NM, Surmeier DJ (2005) Cholinergic suppression of KCNQ channel currents enhances excitability of striatal medium spiny neurons. J Neurosci 25:7449–7458

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Tian X, Day M, Ulrich S, Tkatch T, Nathanson NM, Surmeier DJ (2007) Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci 10:1458–1466

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321:848–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen W, Plotkin JL, Francardo V, Ko WK, Xie Z, Li Q, Fieblinger T, Wess J, Neubig RR, Lindsley CW, Conn PJ, Greengard P, Bezard E, Cenci MA, Surmeier DJ (2015) M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of l-DOPA-induced dyskinesia. Neuron 88:762–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimo Y, Hikosaka O (2001) Role of tonically active neurons in primate caudate in reward-oriented saccadic eye movement. J Neurosci 21:7804–7814

    CAS  PubMed  Google Scholar 

  • Sidibe M, Smith Y (1999) Thalamic inputs to striatal interneurons in monkeys: synaptic organization and co-localization of calcium binding proteins. Neuroscience 89:1189–1208

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Raju DV, Pare JF, Sidibe M (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Galvan A, Ellender TJ, Doig N, Villalba RM, Huerta-Ocampo I, Wichmann T, Bolam JP (2014) The thalamostriatal system in normal and diseased states. Front Syst Neurosci 8:5

    PubMed  PubMed Central  Google Scholar 

  • Steriade M (1997) Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cereb Cortex 7:583–604

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Amzica F, Contreras D (1994) Cortical and thalamic cellular correlates of electroencephalographic burst-suppression. Electroencephalogr Clin Neurophysiol 90(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Surmeier DJ, Plotkin J, Shen W (2009) Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection. Curr Opin Neurobiol 19:621–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton RS (1988) Learning to predict by the method of temporal differences. Mach Learn 3:9–44

    Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement Learning. The MIT press, Cambridge

    Google Scholar 

  • Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75:58–64

    Article  CAS  PubMed  Google Scholar 

  • Vandermaelen CP, Kitai ST (1980) Intracellular analysis of synaptic potentials in rat neostriatum following stimulation of the cerebral cortex, thalamus, and substantia nigra. Brain Res Bull 5:725–733

    Article  CAS  PubMed  Google Scholar 

  • Villalba RM, Wichmann T, Smith Y (2014) Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease. Brain Struct Funct 219:381–394

    Article  CAS  PubMed  Google Scholar 

  • Wilson CJ (2005) The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons. Neuron 45:575–585

    Article  CAS  PubMed  Google Scholar 

  • Wilson CJ, Chang HT, Kitai ST (1990) Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci 10:508–519

    CAS  PubMed  Google Scholar 

  • Yamada H, Matsumoto N, Kimura M (2004) Tonically active neurons in the primate caudate nucleus and putamen differentially encode instructed motivational outcomes of action. J Neurosci 24:3500–3510

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Matsumoto N, Kimura M (2007) History- and current instruction-based coding of forthcoming behavioral outcomes in the striatum. J Neurophysiol 98:3557–3567

    Article  PubMed  Google Scholar 

  • Yamanaka K, Hori Y, Ueda Y, Minamimoto T, Kimura M (2010) Signals of reward value and actions represented in the neuronal activity of CM thalamus. Neurosci Res 68:e293

    Article  Google Scholar 

  • Zhang K, Sejnowski TJ (1999) Neuronal tuning: to sharpen or to broaden? Neural Comput 11:75–84

    Article  CAS  PubMed  Google Scholar 

  • Ztaou S, Maurice N, Camon J, Guiraudie-Capraz G, Kerkerian-Le Goff L, Beurrier C, Liberge M, Amalric M (2016) Involvement of striatal cholinergic interneurons and M1 and M4 muscarinic receptors in motor symptoms of Parkinson’s disease. J Neurosci 36:9161–9172

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Haruno and Y. Sakai, Y. Kubota for critical reading and advice on the manuscript, R. Sakane, M. Funami and I. Kawashima for technical assistance. This study was supported by Grant-in-Aid for Scientific Research 23120010, 26290009, and 15K14320 to M.K., and for Young Scientists (B) 20700293 to Y.H., 24700425 to K.Y., by the Development of Biomarker Candidates for Social Behavior carried out under the Strategic Research Program for Brain Sciences from the Ministry of Education, Culture, Sports, Science and Technology of Japan (M.K.), and by National Institutes for Health grant R01 NS025529 to A.M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Kimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamanaka, K., Hori, Y., Minamimoto, T. et al. Roles of centromedian parafascicular nuclei of thalamus and cholinergic interneurons in the dorsal striatum in associative learning of environmental events. J Neural Transm 125, 501–513 (2018). https://doi.org/10.1007/s00702-017-1713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1713-z

Keywords

Navigation