Skip to main content
Log in

The effects of 1 Hz rTMS preconditioned by tDCS on gait kinematics in Parkinson’s disease

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Hypokinetic gait is a common and very disabling symptom of Parkinson’s disease (PD). Repetitive transcranial magnetic stimulation (rTMS) over the motor cortex has been used with variable effectiveness to treat hypokinesia in PD. Preconditioning rTMS by transcranial direct current stimulation (tDCS) may enhance its effectiveness to treat hypokinetic gait in PD. Three-dimensional kinematic gait analysis was performed (1) prior to, (2) immediately after and (3) 30 min after low-frequency rTMS (1 Hz, 900 pulses, 80 % of resting motor threshold) over M1 contralateral to the more affected body side preconditioned by (1) cathodal, (2) anodal or (3) sham tDCS (amperage: 1 mA, duration: 10 min) in ten subjects with PD (7 females, mean age 63 ± 9 years) and ten healthy subjects (four females, mean age 50 ± 11 years). The effects of tDCS-preconditioned rTMS on gait kinematics were assessed by the following parameters: number of steps, step length, stride length, double support time, cadence, swing and stance phases. Our data suggest a bilateral improvement of hypokinetic gait in PD after 1 Hz rTMS over M1 of the more affected body side preceded by anodal tDCS. In contrast, 1 Hz rTMS alone (preceded by sham tDCS) and 1 Hz rTMS preceded by cathodal tDCS were ineffective to improve gait kinematics in PD. In healthy subjects, gait kinematics was unaffected by either intervention. Preconditioning motor cortex rTMS by tDCS is a promising approach to treat hypokinetic gait in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arias P, Vivas J, Grieve KL, Cudeiro J (2010) Controlled trial on the effect of 10 days low-frequency repetitive transcranial magnetic stimulation (rTMS) on motor signs in Parkinson’s disease. Mov Disord 25:1830–1838

    Article  PubMed  Google Scholar 

  • Avanzino L, Bove M, Trompetto C, Tacchino A, Ogliastro C, Abbruzzese G (2008) 1-Hz repetitive TMS over ipsilateral motor cortex influences the performance of sequential finger movements of different complexity. Eur J Neurosci 27:1285–1291

    Article  PubMed  Google Scholar 

  • Bäumer T, Hidding U, Hamel W, Buhmann C, Moll CK, Gerloff C, Orth M, Siebner HR, Münchau A (2009) Effects of DBS, premotor rTMS, and levodopa on motor function and silent period in advanced Parkinson’s disease. Mov Disord 24:672–676

    Article  PubMed  Google Scholar 

  • Benninger DH, Berman BD, Houdayer E, Pal N, Luckenbaugh DA, Schneider L, Miranda S, Hallett M (2011) Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson’s disease. Neurology 76:601–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benninger DH, Iseki K, Kranick S, Luckenbaugh DA, Houdayer E, Hallett M (2012) Controlled study of 50-Hz repetitive transcranial magnetic stimulation for treatment of Parkinson’s disease. Neurorehabil Neural Repair 26:1096–1105

    Article  PubMed  Google Scholar 

  • Benninger DH, Lomarev M, Lopez G, Wassermann EM, Li X, Considine E, Hallett M (2010) Transcranial direct current stimulation for the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 81:1105–1111

    Article  PubMed  Google Scholar 

  • Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2004) Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur J Neurosci 19:1950–1962

    Article  PubMed  Google Scholar 

  • Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–1403

    Article  CAS  PubMed  Google Scholar 

  • Dafotakis M, Grefkes C, Wang L, Fink GR, Nowak DA (2008) The effects of 1 Hz rTMS over the hand area of M1 on movement kinematics of the ipsilateral hand. J Neural Transm 115:1269–1274

    Article  PubMed  Google Scholar 

  • Elahi B, Elahi B, Chen R (2009) Effect of transcranial magnetic stimulation on Parkinson motor function-systematic review of controlled clinical trials. Mov Disord 24:357–363

    Article  PubMed  Google Scholar 

  • Fahn S, Elton RL, Members of the UPDRS Development Committee (1987) The unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne DB, Goldstein M (eds) Recent developments in Parkinson’s disease, vol 2. McMillan Healthcare Information, Florham Park, pp 153–163

    Google Scholar 

  • Fierro B, Brighina F, D’Amelio M, Daniele O, Lupo I, Ragonese P, Palermo A, Savettieri G (2008) Motor intracortical inhibition in PD: l-DOPA modulation of high-frequency rTMS effects. Exp Brain Res 184:521–528

    Article  PubMed  Google Scholar 

  • Filipović SR, Rothwell JC, Bhatia K (2010) Low-frequency repetitive transcranial magnetic stimulation and off-phase motor symptoms in Parkinson’s disease. J Neurol Sci 291(1–2):1–4

    Article  PubMed  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) Mini-Mental State (a practical method for grading the state of patients for the clinician). J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  • Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, Silva MT, Barbosa ER, Nitsche MA, Pascual-Leone A (2006) Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord 21:1693–1702

    Article  PubMed  Google Scholar 

  • Ghabra MB, Hallett M, Wassermann EM (1999) Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD. Neurology 52:768–770

    Article  CAS  PubMed  Google Scholar 

  • González-García N, Armony JL, Soto J, Trejo D, Alegría MA, Drucker-Colín R (2011) Effects of rTMS on Parkinson’s disease: a longitudinal fMRI study. J Neurol 258:1268–1280

    Article  PubMed  Google Scholar 

  • Grüner U, Eggers C, Ameli M, Sarfeld AS, Fink GR, Nowak DA (2010) 1 Hz rTMS preconditioned by tDCS over the primary motor cortex in Parkinson’s disease: effects on bradykinesia of arm and hand. J Neural Transm 117:207–216

    Article  PubMed  Google Scholar 

  • Huang YY, Colino A, Selig DK, Malenka RC (1992) The influence of prior synaptic activity on the induction of long-term potentiation. Science 255:730–733

    Article  CAS  PubMed  Google Scholar 

  • Ikegeuchi M, Touge T, Nishiyama Y, Takeuchi H, Kuriyama S, Ohkawa M (2003) Effects of successive repetitive transcranial magnetic stimulation on motor performances and brain perfusion in idiopathic Parkinson’s disease. J Neurol Sci 209:41–46

    Article  Google Scholar 

  • Khedr EM, Farweez HM, Islam H (2003) Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson’s disease patients. Eur J Neurol 10:567–572

    Article  CAS  PubMed  Google Scholar 

  • Khedr EM, Rothwell JC, Shawky OA, Ahmed MA, Hamdy A (2006) Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson’s disease. Mov Disord 21:2201–2205

    Article  PubMed  Google Scholar 

  • Kirkwood A, Rioult MC, Bear MF (1996) Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381:526–528

    Article  CAS  PubMed  Google Scholar 

  • Kiss RM, Kocsis L, Knoll Z (2004) Joint kinematics and spatial–temporal parameters of gait measured by an ultrasound-based system. Med Eng Phys 26:611–620

    Article  PubMed  Google Scholar 

  • Knutsson E (1972) An analysis of Parkinsonian gait. Brain 95:475–486

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M (2010) Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning. Restor Neurol Neurosci 28:437–448

    PubMed  Google Scholar 

  • Krack P, Pollak P, Limousin P, Hoffmann D, Xie J, Benazzouz A (1998) Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson’s disease. Brain 121:141–147

    Article  Google Scholar 

  • Lang N, Siebner HR, Ernst D, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol Psychiatry 56:634–639

    Article  PubMed  Google Scholar 

  • Lang N, Siebner HR, Ward NS et al (2005) How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 22:495–504

    Article  PubMed Central  PubMed  Google Scholar 

  • Lefaucheur JP, Drouot X, Von Raison F, Ménard-Lefaucheur I, Cesaro P, Nguyen J-P (2004) Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease. Clin Neurophysiol 115:2530–2541

    Article  PubMed  Google Scholar 

  • Lomarev MP, Kanchana S, Bara-Jimenez W, Iyer M, Wassermann EM, Hallett M (2006) Placebo-controlled study of rTMS for the treatment of Parkinson’s disease. Mov Disord 21:325–331

    Article  PubMed  Google Scholar 

  • Lou JS, Benice T, Kearns G, Sexton G, Nutt J (2003) Levodopa normalizes exercise related cortico-motoneuron excitability abnormalities in Parkinson’s disease. Clin Neurophysiol 114:930–937

    Article  CAS  PubMed  Google Scholar 

  • Mak MK (2013) Repetitive transcranial magnetic stimulation combined with treadmill training can modulate corticomotor inhibition and improve walking performance in people with Parkinson’s disease. J Physiother 59:128

    Article  PubMed  Google Scholar 

  • Minks E, Mareček R, Pavlík T, Ovesná P, Bareš M (2011) Is the cerebellum a potential target for stimulation in Parkinson’s disease? Results of 1-Hz rTMS on upper limb motor tasks. Cerebellum 10:804–811

    Article  PubMed  Google Scholar 

  • Morris ME, Iansek R, Matyas TA, Summers JJ (1994) The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain 117:1169–1181

    Article  PubMed  Google Scholar 

  • Nitsche MA, Kuo MF, Grosch J, Bergner C, Monte-Silva K, Paulus W (2009) D1-receptor impact on neuroplasticity in humans. J Neurosci 29:2648–2653

    Article  CAS  PubMed  Google Scholar 

  • Nitsche MA, Lampe C, Antal A, Liebetanz D, Lang N, Tergau F, Paulus W (2006) Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur J Neurosci 23:1651–1657

    Article  PubMed  Google Scholar 

  • Nitsche MA, Paulus W (1997) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 15:633–639

    Google Scholar 

  • Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901

    Article  CAS  PubMed  Google Scholar 

  • Okabe S, Ugawa Y, Kanazawa I (2003) Effectiveness of rTMS on Parkinson’s Disease Study Group. 0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared to a realistic sham stimulation in Parkinson’s disease. Mov Disord 18:382–388

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117:847–858

    Article  PubMed  Google Scholar 

  • Peppe A, Chiavalon C, Pasqualetti P, Crovato D, Caltagirone C (2007) Does gait analysis quantify motor rehabilitation efficacy in Parkinson’s disease patients? Gait Posture 26:452–462

    Article  CAS  PubMed  Google Scholar 

  • Rascol O, Sabatini U, Chollet F, Celsis P, Montastruc JL, Marc-Vergnes JP, Rascol A (1992) Supplementary and primary sensory motor area activity in Parkinson’s disease. Regional cerebral blood flow changes during finger movements and effects of apomorphine. Arch Neurol 49:144–148

    Article  CAS  PubMed  Google Scholar 

  • Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L, Berry I, Montastruc JL, Chollet F, Rascol O (2000) Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 123:394–403

    Article  PubMed  Google Scholar 

  • Samuel M, Ceballos-Baumann AO, Blin J, Uema T, Boecker H, Passingham RE, Brooks DJ (1997) Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study. Brain 120:963–976

    Article  PubMed  Google Scholar 

  • Shirota Y, Ohtsu H, Hamada M, Enomoto H, Ugawa Y (2013) Research committee on rTMS treatment of Parkinson’s disease supplementary motor area stimulation for Parkinson’s disease: a randomized controlled study. Neurology 80:1400–1405

    Article  PubMed  Google Scholar 

  • Shimamoto H, Takasaki K, Shigemori M, Imaizumi T, Ayabe M, Shoji H (2001) Therapeutic effect and mechanism of repetitive transcranial magnetic stimulation in Parkinson’s disease. J Neurol 248:48–51

    Article  Google Scholar 

  • Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24:3379–3385

    Article  CAS  PubMed  Google Scholar 

  • Siebner HR, Rossmeier C, Mentschel C, Peinemann A, Conrad B (2000) Short-term motor improvement after sub-threshold 5-Hz repetitive transcranial magnetic stimulation of the primary motor hand area in Parkinson’s disease. J Neurol Sci 178:91–94

    Article  CAS  PubMed  Google Scholar 

  • Strafella AP, Ko JH, Grant J, Fraraccio M, Monchi O (2005) Corticostriatal functional interactions in Parkinson’s disease: a rTMS/[11C]raclopride PET study. Eur J Neurosci 22:2946–2952

    Article  PubMed Central  PubMed  Google Scholar 

  • Strafella AP, Paus T, Fraraccio M, Dagher A (2003) Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 126:2609–2615

    Article  PubMed  Google Scholar 

  • Tergau F, Wassermann EM, Paulus W, Ziemann U (1999) Lack of clinical improvement in patients with Parkinson’s disease after low and high frequency repetitive transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:281–288

    Google Scholar 

  • Yang YR, Tseng CY, Chiou SY, Liao KK, Cheng SJ, Lai KL, Wang RY (2013) Combination of rTMS and treadmill training modulates corticomotor inhibition and improves walking in Parkinson’s disease: a randomized trial. Neurorehabil Neural Repair 27:79–86

    Article  CAS  PubMed  Google Scholar 

  • Wu AD, Fregni F, Simon DK, Deblieck C, Pascual-Leone A (2008) Noninvasive brain stimulation for Parkinson’s disease and dystonia. Neurotherapeutics 5:345–361

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

None of the authors has any financial disclosures regarding the present manuscript.

Full financial disclosures of all authors for the past year:

Stock Ownership in medically related fields: Ameli: none; Fisse: none; Sarfeld: none; Fink: none; Nowak: none.

Intellectual Property Rights: Ameli: none; Fisse: none; Sarfeld: none; Fink: none; Nowak: none.

Consultancies: Ameli: none; Fisse: none; Sarfeld: none; Fink: none; Nowak: none.

Expert Testimony: Ameli: none; Fisse: none; Sarfeld: none; Fink: none; Nowak: none.

Advisory Boards: Ameli: none; Fisse: none; Sarfeld: none; Fink: none; Nowak: none.

Employment: Ameli: none; Fisse: none; Sarfeld: none; Fink: none; Nowak: none.

Partnerships: Ameli: none; Fisse: none; Sarfeld: none; Fink: none; Nowak: none.

Contracts: Ameli: none; Fisse: none; Sarfeld: none; Fink: none; Nowak: none.

Honoraria: Ameli: none; Fisse: none; Sarfeld: none; Fink: none; Nowak: none.

Royalties: Ameli: none; Fisse: none; Sarfeld: none; Fink: none; Nowak: none.

Grants: Ameli: none; Fisse: none; Sarfeld: none; Fink: none; Nowak: none.

Other: Ameli: none; Fisse: none; Sarfeld: none; Fink: none; Nowak: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis A. Nowak.

Additional information

Mitra von Papen and Mirabell Fisse have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Papen, M., Fisse, M., Sarfeld, AS. et al. The effects of 1 Hz rTMS preconditioned by tDCS on gait kinematics in Parkinson’s disease. J Neural Transm 121, 743–754 (2014). https://doi.org/10.1007/s00702-014-1178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1178-2

Keywords

Navigation