Skip to main content

Advertisement

Log in

Is the Cerebellum a Potential Target for Stimulation in Parkinson's Disease? Results of 1-Hz rTMS on Upper Limb Motor Tasks

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The aim of this study was to find whether 1-Hz cerebellar repetitive transcranial magnetic stimulation (rTMS) could affect upper limb movement in early-stage Parkinson's disease (PD). Twenty patients with PD underwent one session with real and one with sham rTMS. rTMS (1 Hz, 600 pulses) was targeted at the right lateral cerebellum. Before and after rTMS, patients performed two motor tests with their fingers and hands (ball test, nine-hole peg test). The duration of these tests was measured. There were statistically significant differences (p < 0.05) in the results of the tests after real stimulation and sham stimulation. We excluded the impact of learning. After real rTMS, we observed a significantly faster response in the ball test and a slower response in the nine-hole peg test, both on the right upper limb. This study indicates the influence of 1-Hz cerebellar rTMS in modifying the voluntary movements of the upper limb in PD. This influence is differentiated: the improvement of gross motor skills and the worsening of fine motor skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ICI:

Intracortical inhibition

ICF:

Intracortical facilitation

ISI:

Interstimulus interval

MEP:

Motor-evoked potentials

PD:

Parkinson's disease

rTMS:

Repetitive transcranial magnetic stimulation

SD:

Standard deviation

TMS:

Transcranial magnetic stimulation

UPDRS:

Unified Parkinson's Disease Rating Scale

References

  1. Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol. 2004;557(2):689–700.

    Article  PubMed  CAS  Google Scholar 

  2. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37(6):703–13.

    Article  PubMed  CAS  Google Scholar 

  3. Minks E, Kopickova M, Marecek R, Streitova H, Bares M. Transcranial magnetic stimulation of the cerebellum. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010;154(2):133–9.

    PubMed  Google Scholar 

  4. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501–19.

    PubMed  CAS  Google Scholar 

  5. Valls-Sole J, Pascual-Leone A, Wassermann EM, Hallett M. Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin Neurophysiol. 1992;85:355–64.

    Article  PubMed  CAS  Google Scholar 

  6. Wassermann EM, Samii A, Mercuri B, Ikoma K, Oddo D, Grill SE, et al. Responses to paired transcranial magnetic stimuli in resting, active and recently activated muscle. Exp Brain Res. 1996;109:158–63.

    Article  PubMed  CAS  Google Scholar 

  7. Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H. Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol. 1997;498:817–23.

    PubMed  CAS  Google Scholar 

  8. Kaňovský P, Bareš M, Streitová H, Klajblová H, Daniel P, Rektor I. Abnormalities of cortical excitability and cortical inhibition in cervical dystonia. Evidence from somatosensory evoked potentials and paired transcranial magnetic stimulation. J Neurol. 2003;250:42–50.

    Article  PubMed  Google Scholar 

  9. Oliveri M, Koch G, Torriero S, Caltagirone C. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett. 2005;376(3):188–93.

    Article  PubMed  CAS  Google Scholar 

  10. Lefaucheur JP. Motor cortex dysfunction revealed by cortical excitability studies in Parkinson's disease: influence of antiparkinsonian treatment and cortical stimulation. Clin Neurophysiol. 2005;116(2):244–53.

    Article  PubMed  CAS  Google Scholar 

  11. Théoret H, Haque J, Pascual-Leone A. Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neurosci Lett. 2001;306(1–2):29–32.

    Article  PubMed  Google Scholar 

  12. Fierro B, Giglia G, Palermo A, Pecoraro C, Scalia S, Brighina F. Modulatory effects of 1 Hz rTMS over the cerebellum on motor cortex excitability. Exp Brain Res. 2007;176(3):440–7.

    Article  PubMed  Google Scholar 

  13. Miall RC, Christensen LO. The effect of rTMS over the cerebellum in normal human volunteers on peg-board movement performance. Neurosci Lett. 2004;371(2–3):185–9.

    Article  PubMed  CAS  Google Scholar 

  14. Miall RC, Christensen LO, Cain O, Stanley J. Disruption of state estimation in the human lateral cerebellum. PLoS Biol. 2007;5(11):2733–44.

    Article  CAS  Google Scholar 

  15. Miall RC, King D. State estimation in the cerebellum. Cerebellum. 2008;7(4):572–6.

    Article  PubMed  Google Scholar 

  16. Lo YL, Fook-Chong S, Chan LL, Ong WY. Cerebellar control of motor activation and cancellation in humans: an electrophysiological study. Cerebellum. 2009;8(3):302–11.

    Article  PubMed  CAS  Google Scholar 

  17. Shimizu H, Tsuda T, Shiga Y, Miyazawa K, Onodera Y, Matsuzaki M, et al. Therapeutic efficacy of transcranial magnetic stimulation for hereditary spinocerebellar degeneration. Tohoku J Exp Med. 1999;189(3):203–11.

    Article  PubMed  CAS  Google Scholar 

  18. Gironell A, Kulisevsky J, Lorenzo J, Barbanoj M, Pascual-Sedano B, Otermin P. Transcranial magnetic stimulation of the cerebellum in essential tremor: a controlled study. Arch Neurol. 2002;59:413–7.

    Article  PubMed  Google Scholar 

  19. Avanzino L, Bove M, Tacchino A, Ruggeri P, Giannini A, Trompetto C, et al. Cerebellar involvement in timing accuracy of rhythmic finger movements in essential tremor. Eur J Neurosci. 2009;30(10):1971–9.

    Article  PubMed  Google Scholar 

  20. Koch G, Brusa L, Carrillo F, Lo Gerfo E, Torriero S, Oliveri M, et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology. 2009;73(2):113–9.

    Article  PubMed  CAS  Google Scholar 

  21. Wu T, Long X, Zang Y, Wang L, Hallett M, Li K, et al. Regional homogeneity changes in patients with Parkinson's disease. Hum Brain Mapp. 2009;30(5):1502–10.

    Article  PubMed  Google Scholar 

  22. Benninger DH, Thees S, Kollias SS, Bassetti CL, Waldvogel D. Morphological differences in Parkinson's disease with and without rest tremor. J Neurol. 2009;256(2):256–63.

    Article  PubMed  Google Scholar 

  23. Kapitán M, Ferrando R, Diéguez E, de Medina O, Aljanati R, Ventura R, et al. Regional cerebral blood flow changes in Parkinson's disease: correlation with disease duration. Rev Esp Med Nucl. 2009;28(3):114–20.

    Article  PubMed  Google Scholar 

  24. Ballanger B, Baraduc P, Broussolle E, Le Bars D, Desmurget M, Thobois S. Motor urgency is mediated by the contralateral cerebellum in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2008;79(10):1110–6.

    Article  PubMed  CAS  Google Scholar 

  25. Minks E, Mareček R, Pavlík T, Chroust K, Bareš M. The effect of repetitive transcranial magnetic stimulation of the cerebellum on the upper limb performance in early Parkinson's disease: a pilot study. Ces Slov Neurol Neurochir. 2010;73/106(1):32–6.

    Google Scholar 

  26. Bareš M, Kaňovský P, Rektor I, Hortová H. Intracortical inhibition and facilitation are impaired in early Parkinson's disease patients—a paired TMS study. Eur J Neurol. 2003;10:385–9.

    Article  PubMed  Google Scholar 

  27. Bareš M, Kaňovský P, Rektor I. Disturbed intracortical excitability in early Parkinson's disease is L-DOPA dose related: a prospective 12-month paired TMS study. Park Relat Disord. 2007;13(8):489–94.

    Article  Google Scholar 

  28. Oldfield RC. The assessment and analysis of handeness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113.

    Article  PubMed  CAS  Google Scholar 

  29. Grice KO, Vogel KA, Le V, Mitchell A, Muniz S, Vollmer MA. Adult norms for a commercially available nine hole peg test for finger dexterity. Am J Occup Ther. 2003;57:570–3.

    Article  Google Scholar 

  30. Bareš M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res. 2007;180(2):355–65.

    Article  PubMed  Google Scholar 

  31. Bareš M, Lungu OV, Husárová I, Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease. Cerebellum. 2010;9(1):124–35.

    Article  PubMed  Google Scholar 

  32. Schrader C, Peschel T, Dauper J, Rollnik D, Kossev AR. Changes in processing of proprioceptive information in Parkinson's disease and multiple system atrophy. Clin Neurophysiol. 2008;119(5):1139–46.

    Article  PubMed  CAS  Google Scholar 

  33. Chen R, Cros D, Curra A, Di Lazzaro D, Lefaucher JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2008;119(3):504–32.

    Article  PubMed  Google Scholar 

  34. Fierro B, Brighina F, D'Amelio M, Daniele O, Lupo I, Ragonese P, et al. Motor intracortical inhibition in PD: L-DOPA modulation of high-frequency rTMS effects. Exp Brain Res. 2008;184(4):521–8.

    Article  PubMed  Google Scholar 

  35. Tamburin S, Fiaschi A, Marani S, Andreoli A, Manganotti P, Zanette G. Enhanced intracortical inhibition in cerebellar patients. J Neurol Sci. 2004;217(2):205–10.

    Article  PubMed  Google Scholar 

  36. Brighina F, Romano M, Giglia G, Saia V, Puma A, Giglia F, et al. Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report. Exp Brain Res. 2009;192(4):651–6.

    Article  PubMed  CAS  Google Scholar 

  37. Gerschlager W, Christensen LO, Bestmann S, Rothwell JC. rTMS over the cerebellum can increase corticospinal excitability through a spinal mechanism involving activation of peripheral nerve fibres. Clin Neurophysiol. 2002;113(9):1435–40.

    Article  PubMed  CAS  Google Scholar 

  38. Koch G, Oliveri M, Torriero S, Salerno S, Gerfo EL, Caltagirone C. Repetitive TMS of cerebellum interferes with millisecond time processing. Exp Brain Res. 2007;179(2):291–9.

    Article  PubMed  Google Scholar 

  39. Nagel M, Zangemeister WH. The effect of transcranial magnetic stimulation over the cerebellum on the synkinesis of coordinated eye and head movements. J Neurol Sci. 2003;213(1–2):35–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank our colleagues Marie Kopíčková, Eva Cejpková, Mgr. Martina Tarasová, Ph.D., Ing. Michal Mikl, Ph.D., Ing. Pavel Daniel, Petra Krainerová, Anna Hlučková, PhDr. Petra Bartoňová, Ph.D., Mgr. Radka Kubíková, Mgr. Zuzana Hummelová (Fanfrdlová), MUDr. Marek Baláž, Ph.D. and MUDr. Hana Srovnalová from the First Department of Neurology, St. Anne's University Hospital and School of Medicine in Brno for their cooperation and assistance in the implementation of transcranial magnetic stimulation. We also thank MUDr. Alexandra Minksová for her help with editing the data and text and above all for creating the conditions for writing this article.

Funding organizations

This study was supported by MSM0021622404 from the Ministry of Education, Youth and Sports of the Czech Republic.

Financial disclosure

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Minks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minks, E., Mareček, R., Pavlík, T. et al. Is the Cerebellum a Potential Target for Stimulation in Parkinson's Disease? Results of 1-Hz rTMS on Upper Limb Motor Tasks. Cerebellum 10, 804–811 (2011). https://doi.org/10.1007/s12311-011-0290-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0290-1

Keywords

Navigation