Skip to main content
Log in

A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease

  • Neurology and Preclinical Neurological Studies - Review article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Increased levels of extracellular glutamate and hyperactivation of glutamatergic receptors in the basal ganglia trigger a critical cascade of events involving both intracellular pathways and cell-to-cell interactions that affect cell viability and promote neuronal death. The ensemble of these glutamate-triggered events is responsible for excitotoxicity, a phenomenon involved in several pathological conditions affecting the central nervous system, including a neurodegenerative disease such as Parkinson’s disease (PD). PD is an age-related disorder caused by the degeneration of dopaminergic neurons within the substantia nigra pars compacta, with a miscellaneous pathogenic background. Glutamate-mediated excitotoxicity may be involved in a lethal vicious cycle, which critically contributes to the exacerbation of nigrostriatal degeneration in PD. Since excitotoxicity is a glutamate-receptor-mediated phenomenon, growing interest and work have been dedicated to the research for modulators of glutamate neurotransmission that might enable new therapeutic interventions to slow down the neurodegenerative process and ameliorate PD motor symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addy C, Assaid C, Hreniuk D et al (2009) Single-dose administration of MK-0657, an NR2B-selective NMDA antagonist, does not result in clinically meaningful improvement in motor function in patients with moderate Parkinson’s disease. J Clin Pharmacol 49:856–864. doi:10.1177/0091270009336735

    CAS  PubMed  Google Scholar 

  • Alagarsamy S, Marino MJ, Rouse ST et al (1999) Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nat Neurosci 2:234–240. doi:10.1038/6338

    CAS  PubMed  Google Scholar 

  • Albin RL, Greenamyre JT (1992) Alternative excitotoxic hypotheses. Neurology 42:733–738

    CAS  PubMed  Google Scholar 

  • Al-Sweidi S, Morissette M, Di Paolo T (2012) Effect of oestrogen receptors on brain NMDA receptors of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. J Neuroendocrinol 24:1375–1385. doi:10.1111/j.1365-2826.2012.02349.x

    CAS  PubMed  Google Scholar 

  • Amalric M, Lopez S, Goudet C et al (2013) Group III and subtype 4 metabotropic glutamate receptor agonists: discovery and pathophysiological applications in Parkinson’s disease. Neuropharmacology 66:53–64. doi:10.1016/j.neuropharm.2012.05.026

    CAS  PubMed  Google Scholar 

  • Ambrosi G, Armentero M-T, Levandis G et al (2010) Effects of early and delayed treatment with an mGluR5 antagonist on motor impairment, nigrostriatal damage and neuroinflammation in a rodent model of Parkinson’s disease. Brain Res Bull 82:29–38. doi:10.1016/j.brainresbull.2010.01.011

    CAS  PubMed  Google Scholar 

  • Armentero M-T, Fancellu R, Nappi G et al (2006) Prolonged blockade of NMDA or mGluR5 glutamate receptors reduces nigrostriatal degeneration while inducing selective metabolic changes in the basal ganglia circuitry in a rodent model of Parkinson’s disease. Neurobiol Dis 22:1–9. doi:10.1016/j.nbd.2005.09.010

    CAS  PubMed  Google Scholar 

  • Bak LK, Schousboe A, Sonnewald U, Waagepetersen HS (2006) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J Cereb Blood Flow Metab 26:1285–1297. doi:10.1038/sj.jcbfm.9600281

    CAS  PubMed  Google Scholar 

  • Barger SW, Goodwin ME, Porter MM, Beggs ML (2007) Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem 101:1205–1213. doi:10.1111/j.1471-4159.2007.04487.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Battaglia G, Busceti CL, Pontarelli F et al (2003) Protective role of group-II metabotropic glutamate receptors against nigro-striatal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Neuropharmacology 45:155–166

    CAS  PubMed  Google Scholar 

  • Battaglia G, Busceti CL, Molinaro G et al (2004) Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J Neurosci 24:828–835. doi:10.1523/JNEUROSCI.3831-03.2004

    CAS  PubMed  Google Scholar 

  • Battaglia G, Busceti CL, Molinaro G et al (2006) Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci 26:7222–7229. doi:10.1523/JNEUROSCI.1595-06.2006

    CAS  PubMed  Google Scholar 

  • Berg D, Godau J, Trenkwalder C et al (2011) AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov Disord 26:1243–1250. doi:10.1002/mds.23616

    PubMed  Google Scholar 

  • Blandini F, Nappi G, Greenamyre JT (2001) Subthalamic infusion of an NMDA antagonist prevents basal ganglia metabolic changes and nigral degeneration in a rodent model of Parkinson’s disease. Ann Neurol 49:525–529

    CAS  PubMed  Google Scholar 

  • Breysse N, Baunez C, Spooren W et al (2002) Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J Neurosci 22:5669–5678

    CAS  PubMed  Google Scholar 

  • Bruno V, Battaglia G, Copani A et al (2001) Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab 21:1013–1033. doi:10.1097/00004647-200109000-00001

    CAS  PubMed  Google Scholar 

  • Chan H, Paur H, Vernon AC et al (2010) Neuroprotection and functional recovery associated with decreased microglial activation following selective activation of mGluR2/3 receptors in a rodent model of Parkinson’s disease. Parkinsons Dis. doi:10.4061/2010/190450

    PubMed Central  PubMed  Google Scholar 

  • Chang PK-Y, Verbich D, McKinney RA (2012) AMPA receptors as drug targets in neurological disease–advantages, caveats, and future outlook. Eur J Neurosci 35:1908–1916. doi:10.1111/j.1460-9568.2012.08165.x

    PubMed  Google Scholar 

  • Clarke CE, Cooper JA, Holdich TAA (2001) Randomized, double-blind, placebo-controlled, ascending-dose tolerability and safety study of remacemide as adjuvant therapy in Parkinson’s disease with response fluctuations. Clin Neuropharmacol 24:133–138

    CAS  PubMed  Google Scholar 

  • Coccurello R, Breysse N, Amalric M (2004) Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology 29:1451–1461. doi:10.1038/sj.npp.1300444

    CAS  PubMed  Google Scholar 

  • Dall’Olio R, Rimondini R, Gandolfi O (1995) The competitive NMDA antagonists CGP 43487 and APV potentiate dopaminergic function. Psychopharmacology 118:310–315

    PubMed  Google Scholar 

  • De Carvalho LP, Bochet P, Rossier J (1996) The endogenous agonist quinolinic acid and the non endogenous homoquinolinic acid discriminate between NMDAR2 receptor subunits. Neurochem Int 28:445–452

    PubMed  Google Scholar 

  • De Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet neurol 5:525–535. doi:10.1016/S1474-4422(06)70471-9

    PubMed  Google Scholar 

  • Di Michele F, Luchetti S, Bernardi G et al (2013) Neurosteroid and neurotransmitter alterations in Parkinson’s disease. Front Neuroendocrinol 34:132–142. doi:10.1016/j.yfrne.2013.03.001

    PubMed  Google Scholar 

  • Dunah AW, Wang Y, Yasuda RP et al (2000) Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-d-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Mol Pharmacol 57:342–352

    CAS  PubMed  Google Scholar 

  • Duty S (2010) Therapeutic potential of targeting group III metabotropic glutamate receptors in the treatment of Parkinson’s disease. Br J Pharmacol 161:271–287. doi:10.1111/j.1476-5381.2010.00882.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duty S (2012) Targeting glutamate receptors to tackle the pathogenesis, clinical symptoms and levodopa-induced dyskinesia associated with Parkinson’s disease. CNS drugs 26:1017–1032. doi:10.1007/s40263-012-0016-z

    CAS  PubMed  Google Scholar 

  • Eggert K, Squillacote D, Barone P et al (2010) Safety and efficacy of perampanel in advanced Parkinson’s disease: a randomized, placebo-controlled study. Mov Disord 25:896–905. doi:10.1002/mds.22974

    PubMed  Google Scholar 

  • Elahi B, Phielipp N, Chen R (2012) N-Methyl-d-Aspartate antagonists in levodopa induced dyskinesia: a meta-analysis. Can J Neurol 39:465–472

    Google Scholar 

  • Ferré S, Agnati LF, Ciruela F et al (2007) Neurotransmitter receptor heteromers and their integrative role in “local modules”: the striatal spine module. Brain Res Rev 55:55–67. doi:10.1016/j.brainresrev.2007.01.007

    PubMed Central  PubMed  Google Scholar 

  • Gao H-C, Zhu H, Song C-Y et al (2013) Metabolic changes detected by ex vivo high resolution 1H NMR spectroscopy in the striatum of 6-OHDA-induced Parkinson’s rat. Mol Neurobiol 47:123–130. doi:10.1007/s12035-012-8336-z

    CAS  PubMed  Google Scholar 

  • Gardoni F, Zianni E, Eramo A et al (2011) Effect of rasagiline on the molecular composition of the excitatory postsynaptic density. Eur J Pharmacol 670:458–463. doi:10.1016/j.ejphar.2011.09.028

    CAS  PubMed  Google Scholar 

  • Gasparini F, Di Paolo T, Gomez-Mancilla B (2013) Metabotropic glutamate receptors for Parkinson’s disease therapy. Parkinsons Dis 2013:196028. doi:10.1155/2013/196028

    PubMed Central  PubMed  Google Scholar 

  • Greco B, Lopez S, van der Putten H et al (2010) Metabotropic glutamate 7 receptor subtype modulates motor symptoms in rodent models of Parkinson’s disease. J Pharmacol Exp Ther 332:1064–1071. doi:10.1124/jpet.109.162115

    CAS  PubMed  Google Scholar 

  • Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26:81–89. doi:10.1016/S0166-2236(02)00040-1

    CAS  PubMed  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696. doi:10.1038/nrn2911

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hovelsø N, Sotty F, Montezinho LP et al (2012) Therapeutic potential of metabotropic glutamate receptor modulators. Curr Neuropharmacol 10:12–48. doi:10.2174/157015912799362805

    PubMed Central  PubMed  Google Scholar 

  • Hsieh M-H, Ho S-C, Yeh K-Y et al (2012) Blockade of metabotropic glutamate receptors inhibits cognition and neurodegeneration in an MPTP-induced Parkinson’s disease rat model. Pharmacol Biochem Behav 102:64–71. doi:10.1016/j.pbb.2012.03.022

    CAS  PubMed  Google Scholar 

  • Huang CC, Lo SW, Hsu KS (2001) Presynaptic mechanisms underlying cannabinoid inhibition of excitatory synaptic transmission in rat striatal neurons. J Physiol 532:731–748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huettner JE (2003) Kainate receptors and synaptic transmission. Prog Neurobiol 70:387–407

    CAS  PubMed  Google Scholar 

  • Hüls S, Högen T, Vassallo N et al (2011) AMPA-receptor-mediated excitatory synaptic transmission is enhanced by iron-induced α-synuclein oligomers. J Neurochem 117:868–878. doi:10.1111/j.1471-4159.2011.07254.x

    PubMed  Google Scholar 

  • Johnson KA, Conn PJ, Niswender CM (2009) Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS Neurol Disord Drug Targets 8:475–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson KA, Jones CK, Tantawy MN et al (2013) The metabotropic glutamate receptor 8 agonist (S)-3,4-DCPG reverses motor deficits in prolonged but not acute models of Parkinson’s disease. Neuropharmacology 66:187–195. doi:10.1016/j.neuropharm.2012.03.029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kachroo A, Orlando LR, Grandy DK et al (2005) Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice. J Neurosci 25:10414–10419. doi:10.1523/JNEUROSCI.3660-05.2005

    CAS  PubMed  Google Scholar 

  • Kaufman AM, Milnerwood AJ, Sepers MD et al (2012) Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons. J Neurosci 32:3992–4003. doi:10.1523/JNEUROSCI.4129-11.2012

    CAS  PubMed  Google Scholar 

  • Kennedy MB (1997) The postsynaptic density at glutamatergic synapses. Trends Neurosci 20:264–268

    CAS  PubMed  Google Scholar 

  • Koutsilieri E, Riederer P (2007) Excitotoxicity and new antiglutamatergic strategies in Parkinson’s disease and Alzheimer’s disease. Parkinsonism Relat Disord 13(Suppl 3):S329–S331. doi:10.1016/S1353-8020(08)70025-7

    PubMed  Google Scholar 

  • Le Poul E, Boléa C, Girard F et al (2012) A potent and selective metabotropic glutamate receptor 4 positive allosteric modulator improves movement in rodent models of Parkinson’s disease. J Pharmacol Exp Ther 343:167–177. doi:10.1124/jpet.112.196063

    PubMed  Google Scholar 

  • Lee M (2013) Neurotransmitters and microglial-mediated neuroinflammation. Curr Protein Pept Sci 14:21–32

    CAS  PubMed  Google Scholar 

  • Lee DY, Lee K-S, Lee HJ et al (2008) Kynurenic acid attenuates MPP(+)-induced dopaminergic neuronal cell death via a Bax-mediated mitochondrial pathway. Eur J Cell Biol 87:389–397. doi:10.1016/j.ejcb.2008.03.003

    CAS  PubMed  Google Scholar 

  • Lees A, Fahn S, Eggert KM et al (2012) Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson’s disease. Mov Disord 27:284–288. doi:10.1002/mds.23983

    CAS  PubMed  Google Scholar 

  • Levandis G, Bazzini E, Armentero M-T et al (2008) Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol Dis 29:161–168. doi:10.1016/j.nbd.2007.08.011

    CAS  PubMed  Google Scholar 

  • Lipton SA (2007) Pathologically activated therapeutics for neuroprotection. Nat Rev Neurosci 8:803–808. doi:10.1038/nrn2229

    CAS  PubMed  Google Scholar 

  • Liu S, Zhao M (2013) Neuroprotective effect of estrogen: role of nonsynaptic NR2B-containing NMDA receptors. Brain Res Bull 93:27–31. doi:10.1016/j.brainresbull.2012.10.004

    CAS  PubMed  Google Scholar 

  • Lundblad M, Decressac M, Mattsson B, Björklund A (2012) Impaired neurotransmission caused by overexpression of α-synuclein in nigral dopamine neurons. Proc Natl Acad Sci USA 109:3213–3219. doi:10.1073/pnas.1200575109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marques O, Outeiro TF (2012) Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis 3:e350. doi:10.1038/cddis.2012.94

    CAS  PubMed Central  PubMed  Google Scholar 

  • McNaught KS, Jenner P (2000) Extracellular accumulation of nitric oxide, hydrogen peroxide, and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition, and/or lipopolysaccharide-induced activation. Biochem Pharmacol 60:979–988

    CAS  PubMed  Google Scholar 

  • Mehta A, Prabhakar M, Kumar P et al (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698:6–18. doi:10.1016/j.ejphar.2012.10.032

    CAS  PubMed  Google Scholar 

  • Meissner WG, Frasier M, Gasser T et al (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10:377–393. doi:10.1038/nrd3430

    CAS  PubMed  Google Scholar 

  • Merino M, Vizuete ML, Cano J, Machado A (1999) The non-NMDA glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline, but not NMDA antagonists, block the intrastriatal neurotoxic effect of MPP+. J Neurochem 73:750–757

    CAS  PubMed  Google Scholar 

  • Misgeld U (2004) Innervation of the substantia nigra. Cell Tissue Res 318:107–114. doi:10.1007/s00441-004-0918-2

    PubMed  Google Scholar 

  • Morales I, Rodriguez M (2012) Self-induced accumulation of glutamate in striatal astrocytes and basal ganglia excitotoxicity. Glia 60:1481–1494. doi:10.1002/glia.22368

    PubMed  Google Scholar 

  • Moreau C, Delval A, Tiffreau V et al (2013) Memantine for axial signs in Parkinson’s disease: a randomised, double-blind, placebo-controlled pilot study. J Neurol Neurosurg Psychiatry 84:552–555. doi:10.1136/jnnp-2012-303182

    PubMed Central  PubMed  Google Scholar 

  • Morin N, Grégoire L, Gomez-Mancilla B et al (2010) Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacology 58:981–986. doi:10.1016/j.neuropharm.2009.12.024

    CAS  PubMed  Google Scholar 

  • Müller T, Kuhn W, Przuntek H (2005) Efficacy of budipine and placebo in untreated patients with Parkinson’s disease. J Neural Transm 112:1015–1023. doi:10.1007/s00702-004-0247-3

    PubMed  Google Scholar 

  • Murray TK, Messenger MJ, Ward MA et al (2002) Evaluation of the mGluR2/3 agonist LY379268 in rodent models of Parkinson’s disease. Pharmacol Biochem Behav 73:455–466

    CAS  PubMed  Google Scholar 

  • Nguyen D, Alavi MV, Kim K-Y et al (2011) A new vicious cycle involving glutamate excitotoxicity, oxidative stress and mitochondrial dynamics. Cell Death Dis 2:e240. doi:10.1038/cddis.2011.117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicholls DG (2008) Oxidative stress and energy crises in neuronal dysfunction. Ann N Y Acad Sci 1147:53–60. doi:10.1196/annals.1427.002

    CAS  PubMed  Google Scholar 

  • Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322. doi:10.1146/annurev.pharmtox.011008.145533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noda M, Beppu K (2013) Possible contribution of microglial glutamate receptors to inflammatory response upon neurodegenerative diseases. J Neurol Dis 1:131. doi:10.4172/2329-6895.1000131

    Google Scholar 

  • Nutt JG, Gunzler SA, Kirchhoff T et al (2008) Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord 23:1860–1866. doi:10.1002/mds.22169

    PubMed Central  PubMed  Google Scholar 

  • Ossowska K, Konieczny J, Wolfarth S, Pilc A (2005) MTEP, a new selective antagonist of the metabotropic glutamate receptor subtype 5 (mGluR5), produces antiparkinsonian-like effects in rats. Neuropharmacology 49:447–455. doi:10.1016/j.neuropharm.2005.04.002

    CAS  PubMed  Google Scholar 

  • Paillé V, Picconi B, Bagetta V et al (2010) Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition. J Neurosci 30:14182–14193. doi:10.1523/JNEUROSCI.2149-10.2010

    PubMed  Google Scholar 

  • Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400. doi:10.1038/nrn3504

    CAS  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perez-Pinzon MA, Stetler RA, Fiskum G (2012) Novel mitochondrial targets for neuroprotection. J Cereb Blood Flow Metab 32:1362–1376. doi:10.1038/jcbfm.2012.32

    CAS  PubMed Central  PubMed  Google Scholar 

  • Picconi B, Piccoli G, Calabresi P (2012) Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol 970:553–572. doi:10.1007/978-3-7091-0932-8_24

    CAS  PubMed  Google Scholar 

  • Price DL, Rockenstein E, Ubhi K et al (2010) Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy–implications for excitotoxicity. PLoS One 5:e14020. doi:10.1371/journal.pone.0014020

    PubMed Central  PubMed  Google Scholar 

  • Raju DV, Ahern TH, Shah DJ et al (2008) Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism. Eur J Neurosci 27:1647–1658. doi:10.1111/j.1460-9568.2008.06136.x

    PubMed  Google Scholar 

  • Rascol O, Barone P, Behari M et al (2012) Perampanel in Parkinson disease fluctuations: a double-blind randomized trial with placebo and entacapone. Clin Neuropharmacol 35:15–20. doi:10.1097/WNF.0b013e318241520b

    CAS  PubMed  Google Scholar 

  • Rebola N, Srikumar BN, Mulle C (2010) Activity-dependent synaptic plasticity of NMDA receptors. J Physiol 588:93–99. doi:10.1113/jphysiol.2009.179382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bolaños JP (2012) Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ 19:1582–1589. doi:10.1038/cdd.2012.33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    CAS  PubMed  Google Scholar 

  • Salat D, Tolosa E (2013) Levodopa in the treatment of Parkinson’s disease: current status and new developments. J Parkinsons Dis 3:255–269. doi:10.3233/JPD-130186

    CAS  PubMed  Google Scholar 

  • Salvatore MF, Davis RW, Arnold JC, Chotibut T (2012) Transient striatal GLT-1 blockade increases EAAC1 expression, glutamate reuptake, and decreases tyrosine hydroxylase phosphorylation at ser(19). Exp Neurol 234:428–436. doi:10.1016/j.expneurol.2012.01.012

    CAS  PubMed  Google Scholar 

  • Santangelo RM, Acker TM, Zimmerman SS et al (2012) Novel NMDA receptor modulators: an update. Expert Opin Ther Pat 22:1337–1352. doi:10.1517/13543776.2012.728587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sattler R, Charlton MP, Hafner M, Tymianski M (1998) Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J Neurochem 71:2349–2364

    CAS  PubMed  Google Scholar 

  • Sawada H, Oeda T, Kuno S et al (2010) Amantadine for dyskinesias in Parkinson’s disease: a randomized controlled trial. PLoS One 5:e15298. doi:10.1371/journal.pone.0015298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shoulson I, Penney J, McDermott M et al (2001) A randomized, controlled trial of remacemide for motor fluctuations in Parkinson’s disease. Neurology 56:455–462

    CAS  PubMed  Google Scholar 

  • Silva-Adaya D, Pérez-De La Cruz V, Villeda-Hernández J et al (2011) Protective effect of L-kynurenine and probenecid on 6-hydroxydopamine-induced striatal toxicity in rats: implications of modulating kynurenate as a protective strategy. Neurotoxicol Teratol 33:303–312. doi:10.1016/j.ntt.2010.10.002

    CAS  PubMed  Google Scholar 

  • Spieker S, Breit S, Klockgether T, Dichgans J (1999) Tremorlytic activity of budipine in Parkinson’s disease. J Neural Transm Suppl 56:165–172

    CAS  PubMed  Google Scholar 

  • Stocchi F, Rascol O, Destee A et al (2013) AFQ056 in Parkinson patients with levodopa-induced dyskinesia: 13-week, randomized, dose-finding study. Mov Disord. doi:10.1002/mds.25561

    Google Scholar 

  • Tavares RG, Tasca CI, Santos CES et al (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40:621–627

    CAS  PubMed  Google Scholar 

  • Turski L, Bressler K, Rettig KJ et al (1991) Protection of substantia nigra from MPP + neurotoxicity by N-methyl-d-aspartate antagonists. Nature 349:414–418. doi:10.1038/349414a0

    CAS  PubMed  Google Scholar 

  • Varanese S, Howard J, Di Rocco A (2010) NMDA antagonist memantine improves levodopa-induced dyskinesias and “on-off” phenomena in Parkinson’s disease. Mov Disord 25:508–510. doi:10.1002/mds.22917

    PubMed  Google Scholar 

  • Vidal E, Fukushima FB, Valle AP, Villas Boas PJF (2013) Unexpected improvement in levodopa-induced dyskinesia and on-off phenomena after introduction of memantine for treatment of Parkinson’s disease dementia. J Am Geriatr Soc 61:170–172. doi:10.1111/jgs.12058

    PubMed  Google Scholar 

  • Wild AR, Akyol E, Brothwell SLC et al (2013) Memantine block depends on agonist presentation at the NMDA receptor in substantia nigra pars compacta dopamine neurones. Neuropharmacology 73C:138–146. doi:10.1016/j.neuropharm.2013.05.013

    Google Scholar 

  • Wolf E, Seppi K, Katzenschlager R et al (2010) Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord 25:1357–1363. doi:10.1002/mds.23034

    PubMed  Google Scholar 

  • Wu Y-N, Johnson SW (2009) Rotenone reduces Mg2+-dependent block of NMDA currents in substantia nigra dopamine neurons. Neurotoxicology 30:320–325. doi:10.1016/j.neuro.2009.01.002

    PubMed  Google Scholar 

  • Yin F, Sancheti H, Cadenas E (2012) Mitochondrial thiols in the regulation of cell death pathways. Antioxid Redox Signal 17:1714–1727. doi:10.1089/ars.2012.4639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zádori D, Klivényi P, Plangár I et al (2011) Endogenous neuroprotection in chronic neurodegenerative disorders: with particular regard to the kynurenines. J Cell Mol Med 15:701–717. doi:10.1111/j.1582-4934.2010.01237.x

    PubMed  Google Scholar 

  • Zhang X-M, Zhu J (2011) Kainic Acid-induced neurotoxicity: targeting glial responses and glia-derived cytokines. Curr Neuropharmacol 9:388–398. doi:10.2174/157015911795596540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou X, Hollern D, Liao J et al (2013) NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors. Cell Death Dis 4:e560. doi:10.1038/cddis.2013.82

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Blandini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrosi, G., Cerri, S. & Blandini, F. A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. J Neural Transm 121, 849–859 (2014). https://doi.org/10.1007/s00702-013-1149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1149-z

Keywords

Navigation