Skip to main content
Log in

The dopaminergic stabilizer pridopidine increases neuronal activity of pyramidal neurons in the prefrontal cortex

  • Translational Neurosciences - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The dopaminergic stabilizer pridopidine demonstrates state-dependent effects on locomotor activity, counteracting both hypo- and hyperactivity in rats. Pridopidine has been shown to display both functional dopamine D2 receptor antagonist properties and increase in biomarkers associated with NMDA-mediated glutamate transmission in the frontal cortex. To further characterise the effects of pridopidine on prefrontal cortex (PFC) neurons, a series of in vivo electrophysiological studies were performed in urethane-anaesthetised rats. Pridopidine, administered at doses from 10 to 60 mg/kg (i.v.), dose dependently increased pyramidal cell firing in the majority of the neurons tested. Pridopidine induced a significant increase of 162 % in mean firing activity of PFC neurons, versus initial basal firing activity as the cumulative dose of 30 mg/kg, i.v., was administered. This enhancement of activity was due to increased firing frequency of already spontaneously active neurons, rather than an increase in population activity. The increase was partially reversed or prevented by a sub-threshold dose of the dopamine D1 receptor antagonist SCH23390 (0.5 mg/kg, i.v.). Microiontophoretic application of pridopidine had only moderate activating effects. The selective dopamine D1 receptor agonist A-68930 also had limited effects when administered by microiontophoretic application, but exerted a dose dependent (0.2–3 mg/kg, i.v.) activation of firing in the majority of neurons tested (10/16). However, inhibition of firing by systemic administration of A-68930 was also observed in a subgroup of neurons (6/16). Both activation and inhibition of firing induced by systemic administration of A-68930 were reversed by the systemic administration of SCH23390. The present data suggests that pridopidine enhances pyramidal cell firing via an indirect dopamine D1 receptor-mediated mechanism. These effects of pridopidine may serve to strengthen the cortico-striatal communication and to improve motor control in Huntington’s disease for which pridopidine is currently in development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • Andersson JL, Nomikos GG, Marcus M, Hertel P, Mathe JM, Svensson TH (1995) Ritanserin potentiates the stimulatory effects of raclopride on neuronal activity and dopamine release selectivity in the mesolimbic dopaminergic system. Naunyn Schmiedebergs Arch Pharmacol 352:374–385

    Article  CAS  PubMed  Google Scholar 

  • Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M, Soule J, Tiron A, Wibrand K (2010) The arc of synaptic memory. Exp Brain Res 200:125–140

    Article  PubMed  Google Scholar 

  • Cools R (2011) Dopaminergic control of the striatum for high-level cognition. Curr Opin Neurobiol 21:402–407

    Article  CAS  PubMed  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1996) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. J Neuropsychiatry Clin Neurosci 8:223–226

    CAS  PubMed  Google Scholar 

  • Dallerac GM, Vatsavayai SC, Cummings DM, Milnerwood AJ, Peddie CJ, Evans KA, Walters SW, Rezaie P, Hirst MC, Murphy KP (2011) Impaired long-term potentiation in the prefrontal cortex of Huntington’s disease mouse models: rescue by D1 dopamine receptor activation. Neurodegener Dis 8:230–239

    Article  CAS  PubMed  Google Scholar 

  • de Yebenes JG, Landwehrmeyer B, Squitieri F, Reilmann R, Rosser A, Barker RA, Saft C, Magnet MK, Sword A, Rembratt A, Tedroff J (2011) Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol 10:1049–1057

    Article  PubMed  Google Scholar 

  • Devoto P, Flore G (2006) On the origin of cortical dopamine: is it a co-transmitter in noradrenergic neurons? Curr Neuropharmacol 4:115–125

    Article  CAS  PubMed  Google Scholar 

  • Dyhring T, Nielsen EO, Sonesson C, Pettersson F, Karlsson J, Svensson P, Christophersen P, Waters N (2010) The dopaminergic stabilizers pridopidine (ACR16) and (−)-OSU6162 display dopamine D(2) receptor antagonism and fast receptor dissociation properties. Eur J Pharmacol 628:19–26

    Article  CAS  PubMed  Google Scholar 

  • Easton N, Steward C, Marshall F, Fone K, Marsden C (2007) Effects of amphetamine isomers, methylphenidate and atomoxetine on synaptosomal and synaptic vesicle accumulation and release of dopamine and noradrenaline in vitro in the rat brain. Neuropharmacology 52:405–414

    Article  CAS  PubMed  Google Scholar 

  • Eltayb A, Wadenberg ML, Svensson TH (2005) Enhanced cortical dopamine output and antipsychotic-like effect of raclopride with adjunctive low-dose l-dopa. Biol Psychiatry 58:337–343

    Article  CAS  PubMed  Google Scholar 

  • Glausier JR, Khan ZU, Muly EC (2009) Dopamine D1 and D5 receptors are localized to discrete populations of interneurons in primate prefrontal cortex. Cereb Cortex 19:1820–1834

    Article  PubMed  Google Scholar 

  • Gronier B (2011) In vivo electrophysiological effects of methylphenidate in the prefrontal cortex: involvement of dopamine D1 and alpha 2 adrenergic receptors. Eur Neuropsychopharmacol 21:192–204

    Article  CAS  PubMed  Google Scholar 

  • Gronier B, Debonnel G (1999) Involvement of sigma receptors in the modulation of the glutamatergic/NMDA neurotransmission in the dopaminergic systems. Eur J Pharmacol 368:183–196

    Article  CAS  PubMed  Google Scholar 

  • Gronier B, Aston J, Liauzun C, Zetterstrom T (2009) Age-dependent effects of methylphenidate in the prefrontal cortex: evidence from electrophysiological and Arc gene expression measurements. J Psychopharmacol 24:1819–1827

    Google Scholar 

  • Gudelsky GA (1995) Effects of sigma receptor ligands on the extracellular concentration of dopamine in the striatum and prefrontal cortex of the rat. Eur J Pharmacol 286:223–228

    Article  CAS  PubMed  Google Scholar 

  • Gui ZH, Zhang QJ, Liu J, Ali U, Li LB, Wang Y, Wang T, Chen L, Hou C, Fan LL (2010) In vivo modulation of the firing activity of putative slow- and fast-spiking interneurons in the medial prefrontal cortex by 5-HT3 receptors in 6-hydroxydopamine-induced Parkinsonian rats. Neuroscience 169:1315–1325

    Article  CAS  PubMed  Google Scholar 

  • Hajos M, Gartside SE, Varga V, Sharp T (2003) In vivo inhibition of neuronal activity in the rat ventromedial prefrontal cortex by midbrain-raphe nuclei: role of 5-HT1A receptors. Neuropharmacology 45:72–81

    Article  CAS  PubMed  Google Scholar 

  • Hohn S, Dallerac G, Faure A, Urbach YK, Nguyen HP, Riess O, von Horsten S, Le Blanc P, Desvignes N, El Massioui N, Brown BL, Doyere V (2011) Behavioral and in vivo electrophysiological evidence for presymptomatic alteration of prefrontostriatal processing in the transgenic rat model for Huntington disease. J Neurosci 31:8986–8997

    Article  CAS  PubMed  Google Scholar 

  • Homayoun H, Moghaddam B (2006) Bursting of prefrontal cortex neurons in awake rats is regulated by metabotropic glutamate 5 (mGlu5) receptors: rate-dependent influence and interaction with NMDA receptors. Cereb Cortex 16:93–105

    Article  PubMed  Google Scholar 

  • Hu XT, Wang RY (1988) Comparison of effects of D-1 and D-2 dopamine receptor agonists on neurons in the rat caudate putamen: an electrophysiological study. J Neurosci 8:4340–4348

    CAS  PubMed  Google Scholar 

  • Ichikawa J, Meltzer HY (1999) R(+)-8-OH-DPAT, a serotonin(1A) receptor agonist, potentiated S(−)-sulpiride-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens but not striatum. J Pharmacol Exp Ther 291:1227–1232

    CAS  PubMed  Google Scholar 

  • Isacson R, Kull B, Wahlestedt C, Salmi P (2004) A 68930 and dihydrexidine inhibit locomotor activity and d-amphetamine-induced hyperactivity in rats: a role of inhibitory dopamine D(1/5) receptors in the prefrontal cortex? Neuroscience 124:33–42

    Article  CAS  PubMed  Google Scholar 

  • Kargieman L, Santana N, Mengod G, Celada P, Artigas F (2008) NMDA antagonist and antipsychotic actions in cortico-subcortical circuits. Neurotox Res 14:129–140

    Article  PubMed  Google Scholar 

  • Kawashima T, Okuno H, Nonaka M, Adachi-Morishima A, Kyo N, Okamura M, Takemoto-Kimura S, Worley PF, Bito H (2009) Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signalling in activated neurons. Proc Natl Acad Sci USA 106:316–321

    Article  CAS  PubMed  Google Scholar 

  • Kieburtz K, On behalf of the HSG HART study investigators (2011) A randomized, double-blind, placebo-controlled trial of ACR16 in Huntington’s disease Neurotherapeutics, p 135

  • Kritzer MF, Goldman-Rakic PS (1995) Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J Comp Neurol 359:131–143

    Article  CAS  PubMed  Google Scholar 

  • Kruse MS, Premont J, Krebs MO, Jay TM (2009) Interaction of dopamine D1 with NMDA NR1 receptors in rat prefrontal cortex. Eur Neuropsychopharmacol 19:296–304

    Article  CAS  PubMed  Google Scholar 

  • Labonte B, Bambico FR, Gobbi G (2009) Potentiation of excitatory serotonergic responses by MK-801 in the medial prefrontal cortex. Naunyn Schmiedebergs Arch Pharmacol 380:383–397

    Article  CAS  PubMed  Google Scholar 

  • Landwehrmeyer B, Marder K, Biilmann Rønn B, Haglund M, On behalf of the MermaiHD and HART study investigators (2011) Effect of the dopaminergic stabilizer pridopidine on motor symptoms in Huntington’s disease: a meta-analysis. Clin Genet 80:48 (abstract 211)

    Google Scholar 

  • Li Z, Huang M, Prus AJ, Dai J, Meltzer HY (2007) 5-HT6 receptor antagonist SB-399885 potentiates haloperidol and risperidone-induced dopamine efflux in the medial prefrontal cortex or hippocampus. Brain Res 1134:70–78

    Article  CAS  PubMed  Google Scholar 

  • Moro H, Sato H, Ida I, Oshima A, Sakurai N, Shihara N, Horikawa Y, Mikuni M (2007) Effects of SKF-38393, a dopamine D1 receptor agonist on expression of amphetamine-induced behavioral sensitization and expression of immediate early gene arc in prefrontal cortex of rats. Pharmacol Biochem Behav 87:56–64

    Article  CAS  PubMed  Google Scholar 

  • Natesan S, Svensson KA, Reckless GE, Nobrega JN, Barlow KB, Johansson AM, Kapur S (2006) The dopamine stabilizers (S)-(−)-(3-Methanesulfonyl-phenyl)-1-propyl-piperidine [(−)-OSU6162] and 4-(3-Methanesulfonylphenyl)-1-propyl-piperidine (ACR16) show high in vivo D2 receptor occupancy, antipsychotic-like efficacy, and low potential for motor side effects in the rat. J Pharmacol Exp Ther 318:810–818

    Article  CAS  PubMed  Google Scholar 

  • Parfitt KD, Gratton A, Bickford-Wimer PC (1990) Electrophysiological effects of selective D1 and D2 dopamine receptor agonists in the medial prefrontal cortex of young and aged Fischer 344 rats. J Pharmacol Exp Ther 254:539–545

    CAS  PubMed  Google Scholar 

  • Pettersson F, Ponten H, Waters N, Waters S, Sonesson C (2010) Synthesis and evaluation of a set of 4-phenylpiperidines and 4-phenylpiperazines as D2 receptor ligands and the discovery of the dopaminergic stabilizer 4-[3-(methylsulfonyl)phenyl]-1-propylpiperidine (huntexil, pridopidine, ACR16). J Med Chem 53:2510–2520

    Article  CAS  PubMed  Google Scholar 

  • Pirot S, Godbout R, Mantz J, Tassin JP, Glowinski J, Thierry AM (1992) Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Neuroscience 49:857–865

    Article  CAS  PubMed  Google Scholar 

  • Ponten H, Kullingsjo J, Lagerkvist S, Martin P, Pettersson F, Sonesson C, Waters S, Waters N (2010) In vivo pharmacology of the dopaminergic stabilizer pridopidine. Eur J Pharmacol 644:88–95

    Article  CAS  PubMed  Google Scholar 

  • Ponten H, Kullingsjo J, Sonesson C, Waters S, Waters N, Tedroff J (2013) The dopaminergic stabilizer pridopidine decreases expression of l-DOPA-induced locomotor sensitisation in the rat unilateral 6-OHDA model. Eur J Pharmacol 698:278–285

    Article  CAS  PubMed  Google Scholar 

  • Povysheva NV, Zaitsev AV, Rotaru DC, Gonzalez-Burgos G, Lewis DA, Krimer LS (2008) Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. J Neurophysiol 100:2348–2360

    Article  CAS  PubMed  Google Scholar 

  • Puig MV, Artigas F, Celada P (2005) Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. Cereb Cortex 15:1–14

    Article  PubMed  Google Scholar 

  • Pycock CJ, Carter CJ, Kerwin RW (1980) Effect of 6-hydroxydopamine lesions of the medial prefrontal cortex on neurotransmitter systems in subcortical sites in the rat. J Neurochem 34:91–99

    Article  CAS  PubMed  Google Scholar 

  • Rezvani AH, Eddins D, Slade S, Hampton DS, Christopher NC, Petro A, Horton K, Johnson M, Levin ED (2008) Neonatal 6-hydroxydopamine lesions of the frontal cortex in rats: persisting effects on locomotor activity, learning and nicotine self-administration. Neuroscience 154:885–897

    Article  CAS  PubMed  Google Scholar 

  • Robinson RG, Stitt TG (1981) Intracortical 6-hydroxydopamine induced an asymmetrical behavioral response in the rat. Brain Res 213:387–395

    Article  CAS  PubMed  Google Scholar 

  • Sahlholm K, Arhem P, Fuxe K, Marcellino D (2013) The dopamine stabilizers ACR16 and (−)-OSU6162 display nanomolar affinities at the sigma-1 receptor. Mol Psychiatry 18:12–14

    Article  CAS  PubMed  Google Scholar 

  • Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–58

    Article  CAS  PubMed  Google Scholar 

  • Sesack SR, Bunney BS (1989) Pharmacological characterization of the receptor mediating electrophysiological responses to dopamine in the rat medial prefrontal cortex: a microiontophoretic study. J Pharmacol Exp Ther 248:1323–1333

    CAS  PubMed  Google Scholar 

  • Sidiropoulou K, Lu FM, Fowler MA, Xiao R, Phillips C, Ozkan ED, Zhu MX, White FJ, Cooper DC (2009) Dopamine modulates an mGluR5-mediated depolarization underlying prefrontal persistent activity. Nat Neurosci 12:190–199

    Article  CAS  PubMed  Google Scholar 

  • Sonesson C, Andersson B, Waters S, Waters N, Tedroff J (2000) New modulators of dopamine neurotransmission, Patent application no. WO146145 A1

  • Steward O, Worley PF (2001) Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30:227–240

    Article  CAS  PubMed  Google Scholar 

  • Sullivan RM, Brake WG (2003) What the rodent prefrontal cortex can teach us about attention-deficit/hyperactivity disorder: the critical role of early developmental events on prefrontal function. Behav Brain Res 146:43–55

    Article  PubMed  Google Scholar 

  • Tang TS, Chen X, Liu J, Bezprozvanny I (2007) Dopaminergic signalling and striatal neurodegeneration in Huntington’s disease. J Neurosci 27:7899–7910

    Article  CAS  PubMed  Google Scholar 

  • Tierney PL, Thierry AM, Glowinski J, Deniau JM, Gioanni Y (2008) Dopamine modulates temporal dynamics of feedforward inhibition in rat prefrontal cortex in vivo. Cereb Cortex 18:2251–2262

    Article  CAS  PubMed  Google Scholar 

  • Tseng KY, O’Donnell P (2007) Dopamine modulation of prefrontal cortical interneurons changes during adolescence. Cereb Cortex 17:1235–1240

    Article  PubMed  Google Scholar 

  • Wang J, O’Donnell P (2001) D(1) dopamine receptors potentiate nmda-mediated excitability increase in layer V prefrontal cortical pyramidal neurons. Cereb Cortex 11:452–462

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu J, Gui ZH, Ali U, Fan LL, Hou C, Wang T, Chen L, Li Q (2011) Alpha2-Adrenoceptor regulates the spontaneous and the GABA/glutamate modulated firing activity of the rat medial prefrontal cortex pyramidal neurons. Neuroscience 182:193–202

    Article  CAS  PubMed  Google Scholar 

  • Waters D, Waters S, Pettersson F, Dyhring T, Sonesson C, Tedroff J, Waters N, Pontén H. 76 (Suppl 1), 74 (Abstract D10 (2009) Pharmacology of the dopaminergic stabilizer pridopidine (ACR16). Clin. Genet 76 (Suppl 1):74

    Google Scholar 

  • Yamamura S, Ohoyama K, Hamaguchi T, Nakagawa M, Suzuki D, Matsumoto T, Motomura E, Tanii H, Shiroyama T, Okada M (2009) Effects of zotepine on extracellular levels of monoamine, GABA and glutamate in rat prefrontal cortex. Br J Pharmacol 157:656–665

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NeuroSearch Sweden. The authors thanks Mrs Ayah Siddiqi and Mr Mathieu Di Miceli (De MontfortUniversity) for editing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Gronier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gronier, B., Waters, S. & Ponten, H. The dopaminergic stabilizer pridopidine increases neuronal activity of pyramidal neurons in the prefrontal cortex. J Neural Transm 120, 1281–1294 (2013). https://doi.org/10.1007/s00702-013-1002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1002-4

Keywords

Navigation