Skip to main content
Log in

NMDA antagonist and antipsychotic actions in cortico-subcortical circuits

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Cognitive deficits in schizophrenia are associated with prefrontal cortex (PFC) abnormalities. Schizophrenic patients show a reduced performance in tasks engaging the PFC and a reduction of markers of cellular integrity and function. Non-competitive N-methyl-Daspartate (NMDA) receptor antagonists are widely used as pharmacological models of schizophrenia due to their ability to exacerbate schizophrenia symptoms in patients and to elicit psychotomimetic actions in healthy volunteers. Also, these drugs evoke behavioral alterations in experimental animals that resemble schizophrenia symptoms. The PFC seems to be a key target area for these agents. However, the cellular and network elements involved are poorly known. Cognitive deficits are of particular interest since an early antipsychotic-induced improvement in cognitive performance predicts a better long-term clinical outcome.

Here we report that the non-competitive NMDA receptor antagonist phencyclidine (PCP) induces a marked disruption of the activity of PFC. PCP administration increased the activity of a substantial proportion of pyramidal neurons, as evidenced by an increase in discharge rate and inc- fos expression. Examination of the effects of PCP on other brain areas revealed an increasedc- fos expression in a number of cortical and subcortical areas, but notably in thalamic nuclei projecting to the PFC. The administration of classical (haloperidol) and/or atypical (clozapine) antipsychotic drugs reversed PCP effects. These results indicate that PCP induces a marked disruption of the network activity in PFC and that antipsychotic drugs may partly exert their therapeutic effect by normalizing hyperactive cortico-thalamocortical circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams B and B Moghaddam (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine.J. Neurosci. 18, 5545–5554.

    PubMed  CAS  Google Scholar 

  • Adams BW and B Moghaddam (2001) Effect of clozapine, haloperidol or M1 00907 on phencyclidine-activated glutamate efflux in the prefrontal cortex.Biol. Psychiatry 50, 750–757.

    Article  PubMed  CAS  Google Scholar 

  • Amargós-Bosch M, X López-Gil, F Artigas and A Adell (2006) Clozapine and olanzapine, but not haloperidol, suppress serotonin efflux in the medial prefrontal cortex elicited by phencyclidine and ketamine.Int. J. Neuropsychopharmacol. 9, 565–573.

    Article  PubMed  CAS  Google Scholar 

  • Berendse HW and HJ Groenewegen (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat.Neuroscience 42, 73–102.

    Article  PubMed  CAS  Google Scholar 

  • Breier A, AK Malhotra, DA Pinals, NI Weisenfeld and D Pickar (1997) Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers.Am. J. Psychiatry 154, 805–811.

    PubMed  CAS  Google Scholar 

  • Celada P, MV Puig, L Díaz-Mataix and F Artigas (2008) The hallucinogen DOI reduces low-frequency oscillations in rat prefrontal cortex: reversal by antipsychotic drugs.Biol. Psychiatry 2008 Apr 22. [Epub ahead of print].

  • Dégenètais E, AM Thierry, J Glowinski and Y Gioanni (2002) Electrophysiological properties of pyramidal neurons in the rat prefrontal cortex: anin vivo intracellular recording study.Cereb. Cortex 12, 1–16.

    Article  PubMed  Google Scholar 

  • Fuster JM (1997)The Prefrontal Cortex Anatomy, Physiology and Neuropsychology of the Frontal Lobe (Lipincott Raven:Philadelphia/New York).

    Google Scholar 

  • Geyer MA, K Krebs-Thomson, DL Braff and NR Swerdlow (2001) Pharmacological studies of prepulse inhibition mod els of sensorimotor gating deficits in schizophrenia: a decade in review.Psychopharmacology (Berl.) 156, 17–154.

    Article  Google Scholar 

  • Goto Y and AA Grace (2006) Alterations in medial prefrontal cortical activity and plasticity in rats with disruption of cortical development.Biol. Psychiatry 60, 1259–1267.

    Article  PubMed  Google Scholar 

  • Groenewegen HJ and HB Uylings (2000) The prefrontal cortex and the integration of sensory limbic and autonomic information.Prog. Brain Res. 126, 3–28.

    Article  PubMed  CAS  Google Scholar 

  • Hajos M (2006) Targeting information-processing deficit in schizophrenia: a novel approach to psychotherapeutic drug discovery.Trends Pharmacol. Sci. 27, 391–398.

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation.Brain 122, 593–624.

    Article  PubMed  Google Scholar 

  • Hoffmann R, W Hendrickse, AJ Rush and R Armitage (2000) Slow-wave activity during non-REM sleep in men with schizophrenia and major depressive disorders.Psychiatry Res. 95, 215–225.

    Article  PubMed  CAS  Google Scholar 

  • Jackson ME, H Homayoun and B Moghaddam (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex.Proc. Natl. Acad. Sci. USA 101, 8467–8472.

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC and SR Zukin (1991) Recent advances in the phencyclidine model of schizophrenia.Am. J. Psychiatry 148, 1301–1308. Review.

    PubMed  CAS  Google Scholar 

  • Jodo E, Y Suzuki, T Katayama, KY Hoshino, S Takeuchi, S Niwa and Y Kayama (2005) Activation of medial prefrontal cortex by phencyclidine is mediated via a hippocampo-prefrontalpathway.Cereb. Cortex 15, 663–669.

    Article  PubMed  Google Scholar 

  • Kargieman L, N Santana, G Mengod, P Celada and F Artigas (2007) Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine.Proc. Natl Acad. Sci. USA 104, 14843–14848.

    Article  PubMed  CAS  Google Scholar 

  • Keshavan MS, CF Reynolds 3rd, MJ Miewald, DM Montrose, JA Sweeney, RC Vasko Jr and DJ Kupfer (1998) Delta sleep deficits in schizophrenia: evidence from automated analyses of sleep data.Arch. Gen. Psychiatry 55, 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, LP Karper, JP Seibyl, GK Freeman, R Delaney, JD Bremner, GR Heninger, MB Bowers and DS Charney (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.Arch. Gen. Psychiatry 51, 199–214.

    PubMed  CAS  Google Scholar 

  • Krystal JH, DC D’Souza, D Mathalon, E Perry, A Belger and R Hoffman (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development.Psychopharmacology (Berl.) 169, 215–233. Review.

    Article  CAS  Google Scholar 

  • Kuroda M, J Yokofujita and K Murakami (1998) An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus.Prog. Neurobiol. 54, 417–458.

    Article  PubMed  CAS  Google Scholar 

  • Laviolette SR, WJ Lipski and AA Grace (2005) A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4receptor-dependent basolateral amygdala inputJ. Neurosci. 25, 6066–6075.

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA and JA Lieberman (2000) Catching up on schizo phrenia: natural history and neurobiology.Neuron 28, 325–334.

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, T Hashimoto and DW Volk (2005) Cortical inhibitory neurons and schizophrenia.Nat. Rev. Neurosci. 6, 312–324.

    Article  PubMed  CAS  Google Scholar 

  • López-Gil J, Z Babot, M Amargós-Bosch, C Suñol, F Artigas and A Adell (2007) Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat.Neuropsychopharmacology 32, 2087–2097.

    Article  PubMed  CAS  Google Scholar 

  • Lorrain DS, CS Baccei, LJ Bristow, JJ Anderson and MA Varney (2003) Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268.Neuroscience 117, 697–706.

    Article  PubMed  CAS  Google Scholar 

  • Malhotra AK, DA Pinals, H Weingartner, K Sirocco, CD Missar, D Pickar and A Breier (1994) NMD A receptor function and human cognition: the effects of ketamine in healthy volunteers.Neuropsychopharmacology 14, 301–307.

    Article  Google Scholar 

  • Marshall L, H Helgadottir, M Molle and J Born (2006) Boosting slow oscillations during sleep potentiates memory.Nature 444, 610–613.

    Article  PubMed  CAS  Google Scholar 

  • Martin P, N Waters, S Waters, A Carlsson and M Carlsson (1997) MK-801-induced hyperlocomotion: differential effects of M100907, SDZ PSD 958 and raclopride.Eur.J. Pharmacol. 335, 107–116.

    Article  PubMed  CAS  Google Scholar 

  • Martin P, ML Carlsson and S Hjorth (1998) Systemic PCP treatment elevates brain extracellular 5-HT: a microdialysis study in awake rats.Neuroreport 9, 2985–2988.

    Article  PubMed  CAS  Google Scholar 

  • Mathé JM, GG Nomikos, KH Blakeman and TH Svensson (1999) Differential actions of dizocilpine (MK-801) on the mesolimbic and mesocortical dopamine systems: role of neuronal activity.Neuropharmacology 38, 121–128.

    Article  PubMed  Google Scholar 

  • McKenna JT and RP Vertes (2004) Afferent projections to nucleus reuniens of the thalamus.J. Comp. Neurol. 480, 115–142.

    Article  PubMed  Google Scholar 

  • Millan MJ, M Brocco, A Gobert, F Joly, K Bervoets, JM Rivet, A Newman-Tancredi, V Audinot and S Maurel (1999) Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2Asites for PCP-induced locomotion in the rat.Eur. J. Neurosci. 11, 4419–4432.

    Article  PubMed  CAS  Google Scholar 

  • Miller EK and JD Cohen (2001) An integrative theory of prefrontal cortex function.Annu. Rev. Neurosci. 24, 167–202.

    Article  PubMed  CAS  Google Scholar 

  • Mirjana C, M Baviera, RW Invernizzi and C Balducci (2004) The serotonin 5-HT2Areceptors antagonist M100907 prevents impairment in attentional performance by NMDA receptor blockade in the rat prefrontal cortex.Neuropsychopharmacology 29, 1637–1647.

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, B Adams, A Verma and D Daly (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex.J. Neurosci. 17, 2921–2927.

    PubMed  CAS  Google Scholar 

  • Nelson CL, JA Burk, JP Bruno and M Sarter (2002) Effects of acute and repeated systemic administration of ketamine on prefrontal acetylcholine release and sustained attention performance in rats.Psychopharmacology (Berl.) 161, 168–179.

    Article  CAS  Google Scholar 

  • Newcomer JW, NB Farber, V Jevtovic-Todorovic, G Selke, AK Melson, T Hershey, S Craft and JW Olney (1999) Ketamine-induced NMDA receptor hypofunction as model of memory impairment and psychosis.Neuropsychopharmacology 20, 106–118.

    Article  PubMed  CAS  Google Scholar 

  • Nowak LG, R Azouz, MV Sanchez-Vives, CM Gray and DA McCormick (2003) Electrophysiological classes of cat primary visual cortical neuronsin vivo as revealed by quantitative analyses.J. Neurophysiol. 89, 1541–1566.

    Article  PubMed  Google Scholar 

  • Paxinos G and C Watson (1998)The Rat Brain in Stereotaxic Coordinates, 4th Edition (Academic Press:Sydney).

    Google Scholar 

  • Puig MV, P Celada, L Díaz-Mataix and F Artigas (2003)In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2Areceptors. Relationship to thalamocortical afferents.Cereb. Cortex 13, 1870–1882.

    Article  Google Scholar 

  • Sekimoto M, M Kato, T Watanabe, N Kajimura and K Takahashi (2007) Reduced frontal asymmetry of delta waves during all-night sleep in schizophrenia.Schizophr. Bull. 33, 1307–1311.

    Article  PubMed  Google Scholar 

  • Serrats J, F Artigas, G Mengod and R Cortés (2003) GABAB receptor mRNA in the raphe nuclei: co-expression with serotonin transporter and glutamic acid decarboxylase.J. Neurochem. 84, 743–752.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CJ and GM Fadayel (1996) Regional effects of MK-801 on dopamine release: effects of competitive NMDA or 5-HT2Areceptor blockade.J. Pharmacol. Exp. Ther. 277, 1541–1549.

    PubMed  CAS  Google Scholar 

  • Steriade M, A Nuñez and F Amzica (1993) A novel slow (1 Hz) oscillation of neocortical neuronsin vivo: depolarizing and hyperpolarizing components.J. Neurosci. 13, 3252–3265.

    PubMed  CAS  Google Scholar 

  • Steriade M (2004) Neocortical cell classes are flexible entities.Nat. Rev. Neurosci. 2, 121–134.

    Article  CAS  Google Scholar 

  • Steriade M (2006) Grouping of brain rhythms in corticothalamic systems.Neuroscience 137, 1087–1106.

    Article  PubMed  CAS  Google Scholar 

  • Stickgold R (2005) Sleep-dependent memory consolidation.Nature 437, 1272–1278.

    Article  PubMed  CAS  Google Scholar 

  • Stickgold R, JA Hobson, R Fosse and M Fosse (2001) Sleep, learning, and dreams: off-line memory reprocessing.Science 294, 1052–1057.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, E Jodo, S Takeuchi, S Niwa and Y Kayama (2002) Acute administration of phencyclidine induces tonic activation of medial prefrontal cortex neurons in freely moving rats.Neuroscience 114, 769–779.

    Article  PubMed  CAS  Google Scholar 

  • Tseng KY, N Mallet, KL Toreson, C Le Moine, F Gonon and P O’Donnell (2006) Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulationin vivo.Synapse 59, 412–417.

    Article  PubMed  CAS  Google Scholar 

  • Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat.Synapse 51, 32–58.

    Article  PubMed  CAS  Google Scholar 

  • Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat.Neuroscience 29, 1–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pau Celada or Francesc Artigas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kargieman, L., Santana, N., Mengod, G. et al. NMDA antagonist and antipsychotic actions in cortico-subcortical circuits. neurotox res 14, 129–140 (2008). https://doi.org/10.1007/BF03033805

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033805

Keywords

Navigation