Skip to main content

Advertisement

Log in

Opposing local effects of endocannabinoids on the activity of noradrenergic neurons and release of noradrenaline: relevance for their role in depression and in the actions of CB1 receptor antagonists

  • Biological Psychiatry - Review article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

There is strong evidence that endocannabinoids modulate signaling of serotonin and noradrenaline, which play key roles in the pathophysiology and treatment of anxiety and depression. Most pharmacological and genetic, human and rodent studies suggest that the presence of under-functioning endocannabinoid type-1 (CB1) receptors is associated with increased anxiety and elevated extracellular serotonin concentration. In contrast, noradrenaline is presumably implicated in the mediation of depression-type symptoms of CB1 receptor antagonists. Evidence shows that most CB1 receptors located on axons and terminals of GABA-ergic, serotonergic or glutamatergic neurons stimulate the activity of noradrenergic neurons. In contrast, those located on noradrenergic axons and terminals inhibit noradrenaline release efficiently. In this latter process, excitatory ionotropic or G protein-coupled receptors, such as the NMDA, alpha1 and beta1 adrenergic receptors, activate local endocannabinoid synthesis at postsynaptic sites and stimulate retrograde endocannabinoid neurotransmission acting on CB1 receptors of noradrenergic terminals. The underlying mechanisms include calcium signal generation, which activates enzymes that increase the synthesis of both anandamide and 2-arachidonoylglycerol, while Gq/11 protein activation also increases the formation of 2-arachidonoylglycerol from diacylglycerol during the signaling process. In addition, other non-CB1 receptor endocannabinoid targets such as CB2, transient receptor potential vanilloid subtype, peroxisome proliferator-activated receptor-alpha and possibly GPR55 can also mediate some of the endocannabinoid effects. In conclusion, both neuronal activation and neurotransmitter release depend on the in situ synthesized endocannabinoids and thus, local endocannabinoid concentrations in different brain areas may be crucial in the net effect, namely in the regulation of neurons located postsynaptically to the noradrenergic synapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adermark L, Lovinger DM (2007) Retrograde endocannabinoid signaling at striatal synapses requires a regulated postsynaptic release step. Proc Natl Acad Sci USA 104(51):20564–20569

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian GK, Cedarbaum JM, Wang RY (1977) Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain Res 136(3):570–577

    Article  PubMed  CAS  Google Scholar 

  • Anand A, Charney DS (2000) Norepinephrine dysfunction in depression. J Clin Psychiatry 61(Suppl 10):16–24

    PubMed  CAS  Google Scholar 

  • Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Ashton CH, Moore PB (2011) Endocannabinoid system dysfunction in mood and related disorders. Acta Psychiatr Scand 124(4):250–261

    Article  PubMed  CAS  Google Scholar 

  • Aso E, Renoir T, Mengod G, Ledent C, Hamon M, Maldonado R, Lanfumey L, Valverde O (2009) Lack of CB1 receptor activity impairs serotonergic negative feedback. J Neurochem 109(3):935–944

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Shipley MT, Chouvet G, Ennis M, van Bockstaele E, Pieribone V, Shiekhattar R, Akaoka H, Drolet G, Astier B et al (1991) Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. Prog Brain Res 88:47–75

    Article  PubMed  CAS  Google Scholar 

  • Bagdy G (1998) Serotonin, anxiety, and stress hormones. Focus on 5-HT receptor subtypes, species and gender differences. Ann N Y Acad Sci 851:357–363

    Article  PubMed  CAS  Google Scholar 

  • Balazsa T, Biro J, Gullai N, Ledent C, Sperlagh B (2008) CB1-cannabinoid receptors are involved in the modulation of non-synaptic [3H]serotonin release from the rat hippocampus. Neurochem Int 52(1–2):95–102

    Article  PubMed  CAS  Google Scholar 

  • Baldwin DS, Evans DL, Hirschfeld RM, Kasper S (2002) Can we distinguish anxiety from depression? Psychopharmacol Bull 36(Suppl 2):158–165

    PubMed  Google Scholar 

  • Bambico FR, Katz N, Debonnel G, Gobbi G (2007) Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J Neurosci 27(43):11700–11711

    Article  PubMed  CAS  Google Scholar 

  • Bambico FR, Duranti A, Tontini A, Tarzia G, Gobbi G (2009) Endocannabinoids in the treatment of mood disorders: evidence from animal models. Curr Pharm Des 15(14):1623–1646

    Article  PubMed  CAS  Google Scholar 

  • Barna I, Zelena D, Arszovszki AC, Ledent C (2004) The role of endogenous cannabinoids in the hypothalamo-pituitary-adrenal axis regulation: in vivo and in vitro studies in CB1 receptor knockout mice. Life Sci 75(24):2959–2970

    Article  PubMed  CAS  Google Scholar 

  • Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 42(1):33–84

    Article  PubMed  Google Scholar 

  • Bertolino M, Vicini S, Gillis R, Travagli A (1997) Presynaptic alpha2-adrenoceptors inhibit excitatory synaptic transmission in rat brain stem. Am J Physiol 272(3 Pt 1):G654–G661

    PubMed  CAS  Google Scholar 

  • Blier P, Briley M (2011) The noradrenergic symptom cluster: clinical expression and neuropharmacology. Neuropsychiatr Dis Treat 7(Suppl 1):15–20

    PubMed  CAS  Google Scholar 

  • Boehm S (1999) Presynaptic alpha2-adrenoceptors control excitatory, but not inhibitory, transmission at rat hippocampal synapses. J Physiol 519(Pt 2):439–449

    Article  PubMed  CAS  Google Scholar 

  • Brunello N, Mendlewicz J, Kasper S, Leonard B, Montgomery S, Nelson J, Paykel E, Versiani M, Racagni G (2002) The role of noradrenaline and selective noradrenaline reuptake inhibition in depression. Eur Neuropsychopharmacol 12(5):461–475

    Article  PubMed  CAS  Google Scholar 

  • Buffalari DM, Grace AA (2007) Noradrenergic modulation of basolateral amygdala neuronal activity: opposing influences of alpha-2 and beta receptor activation. J Neurosci 27(45):12358–12366

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AF, Mackie K, Van Bockstaele EJ (2010) Cannabinoid modulation of limbic forebrain noradrenergic circuitry. Eur J Neurosci 31(2):286–301

    Article  PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389

    Article  PubMed  CAS  Google Scholar 

  • Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE (2010) Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 167(5):509–527

    Article  PubMed  Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1977) Catecholamine receptors on locus coeruleus neurons: pharmacological characterization. Eur J Pharmacol 44(4):375–385

    Article  PubMed  CAS  Google Scholar 

  • Celada P, Puig M, Amargos-Bosch M, Adell A, Artigas F (2004) The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci 29(4):252–265

    PubMed  Google Scholar 

  • Christensen NJ, Vestergaard P, Sorensen T, Jerris AG, Rafaelsen OJ (1980) Cerebrospinal fluid adrenaline in endogenous depression. Lancet 1(8170):722

    PubMed  CAS  Google Scholar 

  • Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A (2007) Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370(9600):1706–1713

    Article  PubMed  CAS  Google Scholar 

  • Cota D, Steiner MA, Marsicano G, Cervino C, Herman JP, Grubler Y, Stalla J, Pasquali R, Lutz B, Stalla GK, Pagotto U (2007) Requirement of cannabinoid receptor type 1 for the basal modulation of hypothalamic-pituitary-adrenal axis function. Endocrinology 148(4):1574–1581

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrom A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20(7):398–399

    Article  PubMed  CAS  Google Scholar 

  • De Paermentier F, Cheetham SC, Crompton MR, Katona CL, Horton RW (1991) Brain beta-adrenoceptor binding sites in depressed suicide victims: effects of antidepressant treatment. Psychopharmacology 105(2):283–288

    Article  PubMed  Google Scholar 

  • De Paermentier F, Mauger JM, Lowther S, Crompton MR, Katona CL, Horton RW (1997) Brain alpha-adrenoceptors in depressed suicides. Brain Res 757(1):60–68

    Article  PubMed  Google Scholar 

  • Delgado PL (2000) Depression: the case for a monoamine deficiency. J Clin Psychiatry 61(Suppl 6):7–11

    PubMed  CAS  Google Scholar 

  • Delgado PL, Moreno FA (2000) Role of norepinephrine in depression. J Clin Psychiatry 61(Suppl 1):5–12

    PubMed  CAS  Google Scholar 

  • Dell’Osso B, Palazzo MC, Oldani L, Altamura AC (2011) The noradrenergic action in antidepressant treatments: pharmacological and clinical aspects. CNS Neurosci Ther 17(6):723–732

    Article  PubMed  CAS  Google Scholar 

  • Denson TF, Earleywine M (2006) Decreased depression in marijuana users. Addict Behav 31(4):738–742

    Article  PubMed  Google Scholar 

  • Despres JP (2009) Pleiotropic effects of rimonabant: clinical implications. Curr Pharm Des 15(5):553–570

    Article  PubMed  CAS  Google Scholar 

  • Despres JP, Golay A, Sjostrom L (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353(20):2121–2134

    Article  PubMed  CAS  Google Scholar 

  • Domschke K, Dannlowski U, Ohrmann P, Lawford B, Bauer J, Kugel H, Heindel W, Young R, Morris P, Arolt V, Deckert J, Suslow T, Baune BT (2008) Cannabinoid receptor 1 (CNR1) gene: impact on antidepressant treatment response and emotion processing in major depression. Eur Neuropsychopharmacol 18(10):751–759

    Article  PubMed  CAS  Google Scholar 

  • Drevets WC (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 11(2):240–249

    Article  PubMed  CAS  Google Scholar 

  • Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127

    Article  PubMed  CAS  Google Scholar 

  • FDA (2007) US Food and Drug Administration Advisory Committee. FDA briefi ng document: zimulti (rimonabant) Tablets, 20 mg http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4306b1-00-index.htm. Assessed Aug 6 2007

  • Filakovszky J, Gerber K, Bagdy G (1999) A serotonin-1A receptor agonist and an N-methyl-D-aspartate receptor antagonist oppose each others effects in a genetic rat epilepsy model. Neurosci Lett 261(1–2):89–92

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83(3):1017–1066

    PubMed  CAS  Google Scholar 

  • Froger N, Gardier AM, Moratalla R, Alberti I, Lena I, Boni C, De Felipe C, Rupniak NM, Hunt SP, Jacquot C, Hamon M, Lanfumey L (2001) 5-hydroxytryptamine (5-HT)1A autoreceptor adaptive changes in substance P (neurokinin 1) receptor knock-out mice mimic antidepressant-induced desensitization. J Neurosci 21(20):8188–8197

    PubMed  CAS  Google Scholar 

  • Gjerris A (1988) Baseline studies on transmitter substances in cerebrospinal fluid in depression. Acta Psychiatr Scand Suppl 346:1–35

    Article  PubMed  CAS  Google Scholar 

  • Gonda X, Rihmer Z, Juhasz G, Zsombok T, Bagdy G (2007) High anxiety and migraine are associated with the s allele of the 5HTTLPR gene polymorphism. Psychiatry Res 149(1–3):261–266

    Article  PubMed  CAS  Google Scholar 

  • Gonda X, Fountoulakis KN, Juhasz G, Rihmer Z, Lazary J, Laszik A, Akiskal HS, Bagdy G (2009) Association of the s allele of the 5-HTTLPR with neuroticism-related traits and temperaments in a psychiatrically healthy population. Eur Arch Psychiatry Clin Neurosci 259(2):106–113

    Article  PubMed  Google Scholar 

  • Graeff FG, Guimaraes FS, De Andrade TG, Deakin JF (1996) Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 54(1):129–141

    Article  PubMed  CAS  Google Scholar 

  • Graf M, Jakus R, Kantor S, Levay G, Bagdy G (2004) Selective 5-HT1A and 5-HT7 antagonists decrease epileptic activity in the WAG/Rij rat model of absence epilepsy. Neurosci Lett 359(1–2):45–48

    Article  PubMed  CAS  Google Scholar 

  • Gruber AJ, Pope HG Jr, Brown ME (1996) Do patients use marijuana as an antidepressant? Depression 4(2):77–80

    Article  PubMed  CAS  Google Scholar 

  • Gyombolai P, Pap D, Turu G, Catt KJ, Bagdy G, Hunyady L (2012) Regulation of endocannabinoid release by G proteins: a paracrine mechanism of G protein-coupled receptor action. Mol Cell Endocrinol 353(1–2):29–36

    Article  PubMed  CAS  Google Scholar 

  • Haddjeri N, Blier P, de Montigny C (1998) Long-term antidepressant treatments result in a tonic activation of forebrain 5-HT1A receptors. J Neurosci 18(23):10150–10156

    PubMed  CAS  Google Scholar 

  • Hajos N, Katona I, Naiem SS, MacKie K, Ledent C, Mody I, Freund TF (2000) Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci 12(9):3239–3249

    Article  PubMed  CAS  Google Scholar 

  • Halbach OvBu, Dermietzel R (eds) (2002) Neurotransmitters and neuromodulators: handbook of receptors and biological effects. Wiley-VCH, Weinheim

  • Haller J, Bakos N, Szirmay M, Ledent C, Freund TF (2002) The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur J Neurosci 16(7):1395–1398

    Article  PubMed  CAS  Google Scholar 

  • Haring M, Marsicano G, Lutz B, Monory K (2007) Identification of the cannabinoid receptor type 1 in serotonergic cells of raphe nuclei in mice. Neuroscience 146(3):1212–1219

    Article  PubMed  CAS  Google Scholar 

  • Heimann AS, Gomes I, Dale CS, Pagano RL, Gupta A, de Souza LL, Luchessi AD, Castro LM, Giorgi R, Rioli V, Ferro ES, Devi LA (2007) Hemopressin is an inverse agonist of CB1 cannabinoid receptors. Proc Natl Acad Sci USA 104(51):20588–20593

    Article  PubMed  CAS  Google Scholar 

  • Henstridge CM, Balenga NA, Kargl J, Andradas C, Brown AJ, Irving A, Sanchez C, Waldhoer M (2011) Minireview: recent developments in the physiology and pathology of the lysophosphatidylinositol-sensitive receptor GPR55. Mol Endocrinol 25(11):1835–1848

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 87(5):1932–1936

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11(2):563–583

    PubMed  CAS  Google Scholar 

  • Hill MN, Gorzalka BB (2005) Is there a role for the endocannabinoid system in the etiology and treatment of melancholic depression? Behav Pharmacol 16(5–6):333–352

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Carrier EJ, McLaughlin RJ, Morrish AC, Meier SE, Hillard CJ, Gorzalka BB (2008a) Regional alterations in the endocannabinoid system in an animal model of depression: effects of concurrent antidepressant treatment. J Neurochem 106(6):2322–2336

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Miller GE, Ho WS, Gorzalka BB, Hillard CJ (2008b) Serum endocannabinoid content is altered in females with depressive disorders: a preliminary report. Pharmacopsychiatry 41(2):48–53

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Hillard CJ, Bambico FR, Patel S, Gorzalka BB, Gobbi G (2009a) The therapeutic potential of the endocannabinoid system for the development of a novel class of antidepressants. Trends Pharmacol Sci 30(9):484–493

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Miller GE, Carrier EJ, Gorzalka BB, Hillard CJ (2009b) Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 34(8):1257–1262

    Article  PubMed  CAS  Google Scholar 

  • Hirschfeld RM (2000) History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry 61(Suppl 6):4–6

    PubMed  CAS  Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23(5):477–501

    Article  PubMed  CAS  Google Scholar 

  • Irving AJ, Rae MG, Coutts AA (2002) Cannabinoids on the brain. ScientificWorldJournal 2:632–648

    Article  PubMed  CAS  Google Scholar 

  • Juhasz G, Chase D, Pegg E, Downey D, Toth ZG, Stones K, Platt H, Mekli K, Payton A, Elliott R, Anderson IM, Deakin JF (2009) CNR1 gene is associated with high neuroticism and low agreeableness and interacts with recent negative life events to predict current depressive symptoms. Neuropsychopharmacology 34(8):2019–2027

    Article  PubMed  CAS  Google Scholar 

  • Kahn RS, van Praag HM, Wetzler S, Asnis GM, Barr G (1988) Serotonin and anxiety revisited. Biol Psychiatry 23(2):189–208

    Article  PubMed  CAS  Google Scholar 

  • Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89(1):309–380

    Article  PubMed  CAS  Google Scholar 

  • Kantor S, Anheuer ZE, Bagdy G (2000) High social anxiety and low aggression in Fawn-Hooded rats. Physiol Behav 71(5):551–557

    Article  PubMed  CAS  Google Scholar 

  • Katona I, Urban GM, Wallace M, Ledent C, Jung KM, Piomelli D, Mackie K, Freund TF (2006) Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci 26(21):5628–5637

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Charney D (2000) Comorbidity of mood and anxiety disorders. Depress Anxiety 12(Suppl 1):69–76

    Article  PubMed  Google Scholar 

  • Kawamura Y, Fukaya M, Maejima T, Yoshida T, Miura E, Watanabe M, Ohno-Shosaku T, Kano M (2006) The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci 26(11):2991–3001

    Article  PubMed  CAS  Google Scholar 

  • Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289(23):3095–3105

    Article  PubMed  Google Scholar 

  • Kirilly E, Gonda X, Bagdy G (2012) CB1 receptor antagonists: new discoveries leading to new perspectives. Acta Physiol (Oxf) 205(1):41–60

    CAS  Google Scholar 

  • Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA 105(7):2699–2704

    Article  PubMed  CAS  Google Scholar 

  • Lazary J, Lazary A, Gonda X, Benko A, Molnar E, Hunyady L, Juhasz G, Bagdy G (2009) Promoter variants of the cannabinoid receptor 1 gene (CNR1) in interaction with 5-HTTLPR affect the anxious phenotype. Am J Med Genet B Neuropsychiatr Genet 150B(8):1118–1127

    Article  PubMed  CAS  Google Scholar 

  • Lazary J, Juhasz G, Hunyady L, Bagdy G (2011) Personalized medicine can pave the way for the safe use of CB(1) receptor antagonists. Trends Pharmacol Sci 32(5):270–280

    Article  PubMed  CAS  Google Scholar 

  • Leonard BE (2000) Evidence for a biochemical lesion in depression. J Clin Psychiatry 61(Suppl 6):12–17

    PubMed  CAS  Google Scholar 

  • Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274(5292):1527–1531

    Article  PubMed  CAS  Google Scholar 

  • Lovinger DM, Davis MI, Costa RM (2010) Endocannabinoid signaling in the striatum. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Academic Press, London, pp 167–186

    Chapter  Google Scholar 

  • Mackie K (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol 168:299–325

    Article  PubMed  CAS  Google Scholar 

  • Maione S, Bisogno T, de Novellis V, Palazzo E, Cristino L, Valenti M, Petrosino S, Guglielmotti V, Rossi F, Di Marzo V (2006) Elevation of endocannabinoid levels in the ventrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 receptors. J Pharmacol Exp Ther 316(3):969–982

    Article  PubMed  CAS  Google Scholar 

  • Manta S, El Mansari M, Debonnel G, Blier P (2012) Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int J Neuropsychopharmacol 17:1–12

    Article  Google Scholar 

  • Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11(12):4213–4225

    Article  PubMed  CAS  Google Scholar 

  • Mato S, Aso E, Castro E, Martin M, Valverde O, Maldonado R, Pazos A (2007) CB1 knockout mice display impaired functionality of 5-HT1A and 5-HT2A/C receptors. J Neurochem 103(5):2111–2120

    Article  PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564

    Article  PubMed  CAS  Google Scholar 

  • Matsuda LA, Bonner TI, Lolait SJ (1993) Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol 327(4):535–550

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (2005) Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 54(5 Suppl 1):20–23

    Article  PubMed  CAS  Google Scholar 

  • Mendiguren A, Pineda J (2004) Cannabinoids enhance N-methyl-D-aspartate-induced excitation of locus coeruleus neurons by CB1 receptors in rat brain slices. Neurosci Lett 363(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Mendiguren A, Pineda J (2006) Systemic effect of cannabinoids on the spontaneous firing rate of locus coeruleus neurons in rats. Eur J Pharmacol 534(1–3):83–88

    Article  PubMed  CAS  Google Scholar 

  • Monory K, Massa F, Egertova M, Eder M, Blaudzun H, Westenbroek R, Kelsch W, Jacob W, Marsch R, Ekker M, Long J, Rubenstein JL, Goebbels S, Nave KA, During M, Klugmann M, Wolfel B, Dodt HU, Zieglgansberger W, Wotjak CT, Mackie K, Elphick MR, Marsicano G, Lutz B (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51(4):455–466

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Card JP (eds) (1984) Noradrenaline-containing neuron systems. Handbook of chemical neuroanatomy, vol 2. Elsevier, Amsterdam

    Google Scholar 

  • Moreira FA, Crippa JA (2009) The psychiatric side-effects of rimonabant. Rev Bras Psiquiatr 31(2):145–153

    Article  PubMed  Google Scholar 

  • Moretti A, Gorini A, Villa RF (2003) Affective disorders, antidepressant drugs and brain metabolism. Mol Psychiatry 8(9):773–785

    Article  PubMed  CAS  Google Scholar 

  • Muntoni AL, Pillolla G, Melis M, Perra S, Gessa GL, Pistis M (2006) Cannabinoids modulate spontaneous neuronal activity and evoked inhibition of locus coeruleus noradrenergic neurons. Eur J Neurosci 23(9):2385–2394

    Article  PubMed  Google Scholar 

  • Nutt DJ (2002) The neuropharmacology of serotonin and noradrenaline in depression. Int Clin Psychopharmacol 17(Suppl 1):S1–S12

    Article  PubMed  Google Scholar 

  • O’Brien JT, Ames D, Schweitzer I, Colman P, Desmond P, Tress B (1996) Clinical and magnetic resonance imaging correlates of hypothalamic-pituitary-adrenal axis function in depression and Alzheimer’s disease. Br J Psychiatry 168(6):679–687

    Article  PubMed  Google Scholar 

  • Olpe HR, Steinmann M (1991) Responses of locus coeruleus neurons to neuropeptides. Prog Brain Res 88:241–248

    Article  PubMed  CAS  Google Scholar 

  • Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, Myers L, Mora Z, Tagliaferro P, Gardner E, Brusco A, Akinshola BE, Liu QR, Hope B, Iwasaki S, Arinami T, Teasenfitz L, Uhl GR (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536

    Article  PubMed  CAS  Google Scholar 

  • Oropeza VC, Mackie K, Van Bockstaele EJ (2007) Cannabinoid receptors are localized to noradrenergic axon terminals in the rat frontal cortex. Brain Res 1127(1):36–44

    Article  PubMed  CAS  Google Scholar 

  • Owens MJ, Nemeroff CB (1994) Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem 40(2):288–295

    PubMed  CAS  Google Scholar 

  • Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ (2004) Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology 145(12):5431–5438

    Article  PubMed  CAS  Google Scholar 

  • Penninx BW, Beekman AT, Bandinelli S, Corsi AM, Bremmer M, Hoogendijk WJ, Guralnik JM, Ferrucci L (2007) Late-life depressive symptoms are associated with both hyperactivity and hypoactivity of the hypothalamo-pituitary-adrenal axis. Am J Geriatr Psychiatry 15(6):522–529

    Article  PubMed  Google Scholar 

  • Pistis M, Perra S, Pillolla G, Melis M, Gessa GL, Muntoni AL (2004) Cannabinoids modulate neuronal firing in the rat basolateral amygdala: evidence for CB1- and non-CB1-mediated actions. Neuropharmacology 46(1):115–125

    Article  PubMed  CAS  Google Scholar 

  • Poddar MK, Dewey WL (1980) Effects of cannabinoids on catecholamine uptake and release in hypothalamic and striatal synaptosomes. J Pharmacol Exp Ther 214(1):63–67

    PubMed  CAS  Google Scholar 

  • Reguero L, Puente N, Elezgarai I, Mendizabal-Zubiaga J, Canduela MJ, Buceta I, Ramos A, Suarez J, Rodriguez de Fonseca F, Marsicano G, Grandes P (2011) GABAergic and cortical and subcortical glutamatergic axon terminals contain CB1 cannabinoid receptors in the ventromedial nucleus of the hypothalamus. PLoS One 6(10):e26167

    Article  PubMed  CAS  Google Scholar 

  • Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12(Suppl 1):2–19

    Article  PubMed  Google Scholar 

  • Ruilope LM, Despres JP, Scheen A, Pi-Sunyer X, Mancia G, Zanchetti A, Van Gaal L (2008) Effect of rimonabant on blood pressure in overweight/obese patients with/without co-morbidities: analysis of pooled RIO study results. J Hypertens 26(2):357–367

    Article  PubMed  CAS  Google Scholar 

  • Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152(7):1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Samuels ER, Szabadi E (2008) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol 6(3):235–253

    Article  PubMed  CAS  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122(5):509–522

    PubMed  CAS  Google Scholar 

  • Stanley M, Mann JJ (1983) Increased serotonin-2 binding sites in frontal cortex of suicide victims. Lancet 1(8318):214–216

    Article  PubMed  CAS  Google Scholar 

  • Suarez J, Bermudez-Silva FJ, Mackie K, Ledent C, Zimmer A, Cravatt BF, de Fonseca FR (2008) Immunohistochemical description of the endogenous cannabinoid system in the rat cerebellum and functionally related nuclei. J Comp Neurol 509(4):400–421

    Article  PubMed  CAS  Google Scholar 

  • Szemeredi K, Komoly S, Kopin IJ, Bagdy G, Keiser HR, Goldstein DS (1991) Simultaneous measurement of plasma and brain extracellular fluid concentrations of catechols after yohimbine administration in rats. Brain Res 542(1):8–14

    Article  PubMed  CAS  Google Scholar 

  • Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, Kita Y, Hashimoto K, Shimizu T, Watanabe M, Sakimura K, Kano M (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron 65(3):320–327

    Article  PubMed  CAS  Google Scholar 

  • To CT, Bagdy G (1999) Anxiogenic effect of central CCK administration is attenuated by chronic fluoxetine or ipsapirone treatment. Neuropharmacology 38(2):279–282

    Article  PubMed  CAS  Google Scholar 

  • Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53(4):865–871

    Article  PubMed  Google Scholar 

  • Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83(2):393–411

    Article  PubMed  CAS  Google Scholar 

  • Turu G, Simon A, Gyombolai P, Szidonya L, Bagdy G, Lenkei Z, Hunyady L (2007) The role of diacylglycerol lipase in constitutive and angiotensin AT1 receptor-stimulated cannabinoid CB1 receptor activity. J Biol Chem 282(11):7753–7757

    Article  PubMed  CAS  Google Scholar 

  • Turu G, Varnai P, Gyombolai P, Szidonya L, Offertaler L, Bagdy G, Kunos G, Hunyady L (2009) Paracrine transactivation of the CB1 cannabinoid receptor by AT1 angiotensin and other Gq/11 protein-coupled receptors. J Biol Chem 284(25):16914–16921

    Article  PubMed  CAS  Google Scholar 

  • Umathe SN, Manna SS, Jain NS (2011) Involvement of endocannabinoids in antidepressant and anti-compulsive effect of fluoxetine in mice. Behav Brain Res 223(1):125–134

    Article  PubMed  CAS  Google Scholar 

  • Valverde O, Torrens M (2012) CB1 receptor-deficient mice as a model for depression. Neuroscience 204:193–206

    Article  PubMed  CAS  Google Scholar 

  • Van Gaal L, Pi-Sunyer X, Despres JP, McCarthy C, Scheen A (2008) Efficacy and safety of rimonabant for improvement of multiple cardiometabolic risk factors in overweight/obese patients: pooled 1-year data from the rimonabant in obesity (RIO) program. Diabetes Care 31(Suppl 2):S229–S240

    Article  PubMed  CAS  Google Scholar 

  • Van Waes V, Beverley JA, Siman H, Tseng KY, Steiner H (2012) CB1 cannabinoid receptor expression in the striatum: association with corticostriatal circuits and developmental regulation. Front Pharmacol 3:21

    PubMed  Google Scholar 

  • Viveros MP, Marco EM, File SE (2005) Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav 81(2):331–342

    Article  PubMed  CAS  Google Scholar 

  • Weiss JM, Stout JC, Aaron MF, Quan N, Owens MJ, Butler PD, Nemeroff CB (1994) Depression and anxiety: role of the locus coeruleus and corticotropin-releasing factor. Brain Res Bull 35(5–6):561–572

    Article  PubMed  CAS  Google Scholar 

  • WHO (2011) Depression. http://www.who.int/mental_health/management/depression/definition/en/

  • Williamson EM, Evans FJ (2000) Cannabinoids in clinical practice. Drugs 60(6):1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Wittchen HU, Kessler RC, Pfister H, Lieb M (2000) Why do people with anxiety disorders become depressed? A prospective-longitudinal community study. Acta Psychiatr Scand Suppl 406:14–23

    Article  PubMed  Google Scholar 

  • Yates M, Leake A, Candy JM, Fairbairn AF, McKeith IG, Ferrier IN (1990) 5HT2 receptor changes in major depression. Biol Psychiatry 27(5):489–496

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The preparation of this review was supported by the Sixth Framework Program of the EU, LSHM-CT-2004-503474, TAMOP-4.2.1.B-09/1/KMR-2010-0001, ETT 318/041/2009 and OTKA NK-072661.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bagdy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirilly, E., Hunyady, L. & Bagdy, G. Opposing local effects of endocannabinoids on the activity of noradrenergic neurons and release of noradrenaline: relevance for their role in depression and in the actions of CB1 receptor antagonists. J Neural Transm 120, 177–186 (2013). https://doi.org/10.1007/s00702-012-0900-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0900-1

Keywords

Navigation