Skip to main content
Log in

Effects of morning compared with evening bright light administration to ameliorate short-photoperiod induced depression- and anxiety-like behaviors in a diurnal rodent model

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The lack of appropriate animal models for affective disorders is a major factor hindering better understanding of the underlying pathologies and the development of more efficacious treatments. Because circadian rhythms play an important role in affective disorders, we recently suggested that diurnal rodents can be advantageous as model animals. We found that in diurnal rodents, short photoperiod induces depression- and anxiety-like behaviors, with similarities to human seasonal affective disorder. In a pilot study we also found that these behaviors are ameliorated by morning bright light administration. In the present study we further evaluated the effects of morning and evening bright light administration on short photoperiod-induced depression- and anxiety-like behaviors in diurnal fat sand rats. Animals were maintained under short (5L:19D) or neutral (12L:12D) photoperiod and treated with morning or evening bright light or red dim light as control. Morning bright light ameliorated the behavioral deficits in the elevated plus maze and social interaction tests whereas evening bright light was effective only in the social interaction test. This is the first detailed presentation of the effects of bright light treatment in an animal model and a clear demonstration to the advantages of utilizing diurnal rodents to study interactions between circadian rhythms and affect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashkenazy T, Einat H, Kronfeld-Schor N (2009a) Effects of bright light treatment on depression- and anxiety-like behaviors of diurnal rodents maintained on a short daylight schedule. Behav Brain Res 201(2):343–346

    Article  PubMed  Google Scholar 

  • Ashkenazy T, Einat H, Kronfeld-Schor N (2009b) We are in the dark here: Induction of depression- and anxiety-like behaviours in the diurnal fat sand rat, by short daylight or melatonin injections. Int J Neuropsychopharmacol 12(1):83–93

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazy-Frolinger T, Kronfeld-Schor N, Juetten J, Einat H (2009) It is darkness and not light: depression-like behaviors of diurnal unstriped nile grass rats maintained under a short photoperiod schedule. J Neurosci Methods 186(2):165–170

    Article  PubMed  Google Scholar 

  • Challet E (2007) Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148(12):5648–5655

    Article  PubMed  CAS  Google Scholar 

  • Cohen R, Kronfeld-Schor N (2006) Individual variability and photic entrainment of circadian rhythms in golden spiny mice. Physiol Behav 87(3):563–574

    Article  PubMed  CAS  Google Scholar 

  • Cuesta M, Clesse D, Pevet P, Challet E (2009) From daily behavior to hormonal and neurotransmitters rhythms: comparison between diurnal and nocturnal rat species. Horm Behav 55(2):338–347

    Article  PubMed  CAS  Google Scholar 

  • Degen AA, Hazan A, Kam M, Nagy KA (1991) Seasonal water influx and energy-expenditure of free-living fat sand rats. J Mammal 72(4):652–657

    Article  Google Scholar 

  • Einat H, Kronfeld-Schor N (2009) Utilizing diurnal model animals in the study of depression. Front Neurosci 3(2):242–243

    Google Scholar 

  • Einat H, Kronfeld-Schor N, Eilam D (2006) Sand rats see the light: short photoperiod induces a depression-like response in a diurnal rodent. Behav Brain Res 173(1):153–157

    Article  PubMed  Google Scholar 

  • Elizalde N, Gil-Bea FJ, Ramirez MJ, Aisa B, Lasheras B et al (2008) Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: effect of antidepressant treatment. Psychopharmacology (Berl) 199(1):1–14 Epub 2008 May 2010

    Article  CAS  Google Scholar 

  • Fichet-Calvet E, Jomaa I, Ben Ismail R, Ashford RW (1999) Reproduction and abundance of the fat sand rat (Psammomys obesus) in relation to weather conditions in tunisia. J Zool 248:15–26

    Article  Google Scholar 

  • File SE, Hyde JR (1979) A test of anxiety that distinguishes between the actions of benzodiazepines and those of other minor tranquilisers and of stimulants. Pharmacol Biochem Behav 11(1):65–69

    Article  PubMed  CAS  Google Scholar 

  • File SE, Seth P (2003) A review of 25 years of the social interaction test. Eur J Pharmacol 463(1–3):35–53

    Article  PubMed  CAS  Google Scholar 

  • File SE, de Angelis L, Hilakivi LA, Lister RG, Durcan MJ et al (1980) The use of social interaction as a method for detecting anxiolytic activity of chlordiazepoxide-like drugs. J Neurosci Methods 2(3):219–238

    Article  PubMed  CAS  Google Scholar 

  • Flaisher-Grinberg S, Kronfeld-Schor N, Einat H (2010) Models of mania: from facets to domains and from animal models to model animals. J Psychopharmacol 24(3):437–438

    Article  PubMed  CAS  Google Scholar 

  • Flaisher-Grinberg S, Gampetro DR, Kronfeld-Schor N, Einat H (2011) Inconsistent effects of photoperiod manipulations in tests for affective-like changes in mice: implications for the selection of appropriate model animals. Behav Pharmacol 2010:16

    Google Scholar 

  • Goel N, Terman M, Terman JS (2002) Depressive symptomatology differentiates subgroups of patients with seasonal affective disorder. Depress Anxiety 15(1):34–41

    Article  PubMed  Google Scholar 

  • Golden RN, Gaynes BN, Ekstrom RD, Hamer RM, Jacobsen FM et al (2005) The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am J Psychiatry 162(4):656–662

    Article  PubMed  Google Scholar 

  • Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90(3):1063–1102

    Article  PubMed  CAS  Google Scholar 

  • Goodwin FK, Wirz-Justice A, Wehr TA (1982) Evidence that the pathophysiology of depression and the mechanism of action of antidepressant drugs both involve alterations in circadian rhythms. Adv Biochem Psychopharmacol 32:1–11

    PubMed  CAS  Google Scholar 

  • Grippo AJ, Wu KD, Hassan I, Carter CS (2008) Social isolation in prairie voles induces behaviors relevant to negative affect: toward the development of a rodent model focused on co-occurring depression and anxiety. Depress Anxiety 25(6):E17–E26

    Article  PubMed  Google Scholar 

  • Haim A, Alma A, Neuman A (2006) Body mass is a thermoregulatory adaptation of diurnal rodents to the desert environment. J Therm Biol 31(1–2):168–171

    Article  Google Scholar 

  • Ilan M, Yom-Tov Y (1990) Diel activity pattern of a diurnal desert rodent, Psammomys obesus. J Mammal 71:66–69

    Article  Google Scholar 

  • Insel TR (2007) From animal models to model animals. Biol Psychiatry 62(12):1337–1339

    Article  PubMed  Google Scholar 

  • Kaiser N, Nesher R, Donath MY, Fraenkel M, Behar V et al (2005) Psammomys obesus, a model for environment-gene interactions in type 2 diabetes. Diabetes 54:S137–S144

    Article  PubMed  CAS  Google Scholar 

  • Kasper S, Rogers SL, Yancey A, Schulz PM, Skwerer RG et al (1989) Phototherapy in individuals with and without subsyndromal seasonal affective disorder. Arch Gen Psychiatry 46(9):837–844

    Article  PubMed  CAS  Google Scholar 

  • Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE (2005) Prevalence, severity, and comorbidity of 12 month dsm-iv disorders in the national comorbidity survey replication. Arch Gen Psychiatry 62(6):617–627

    Article  PubMed  Google Scholar 

  • Khokhlova IS, Krasnov BR, Kuznetsov V, Sartor CE, Zan M et al (2005) Dietary intake and time budget in two desert rodents: a diurnal herbivore, Psammomys obesus, and a nocturnal granivore, meriones crassus. Mammalia 69(1):57–67

    Article  Google Scholar 

  • Krauss SS, Depue RA, Arbisi PA, Spoont M (1992) Behavioral engagement level, variability, and diurnal rhythm as a function of bright light in bipolar ii seasonal affective disorder: an exploratory study. Psychiatry Res 43(2):147–160

    Article  PubMed  CAS  Google Scholar 

  • Kripke D, Nievergelt C, Joo EJ, Shekhtman T, Kelsoe J (2009) Circadian polymorphisms associated with affective disorders. J Circadian Rhythms 7(1):2

    Article  PubMed  Google Scholar 

  • Krivisky K, Ashkenazy T, Kronfeld-Schor N, Einat H (2011) Antidepressants reverse short-photoperiod-induced, forced swim test depression-like behavior in the diurnal fat sand rat: further support for the utilization of diurnal rodents for modeling affective disorders. Neuropsychobiology 63(3):191–196

    Article  PubMed  CAS  Google Scholar 

  • Kronfeld N, Haim A, Dayan T, Zisapel N, Klingenspor M et al (2000) Seasonal thermogenic acclimation of diurnally and nocturnally active desert spiny mice. Physiol Biochem Zool 73(1):37–44

    Article  Google Scholar 

  • Kronfeld-Schor N, Dayan T (2003) Partitioning of time as an ecological resource. Annu Rev Ecol Evol Syst 34:153–181

    Article  Google Scholar 

  • Kronfeld-Schor N, Dayan T (2008) Activity patterns of rodents: the physiological ecology of biological rhythms. Biol Rhythm Res 39(3):193–211

    Article  Google Scholar 

  • Kronfeld-Schor N, Einat H (2012) Circadian rhythms and depression: human psychopathology and animal models. Neuropharmacology. 62(1):101–114 Epub 2011 Aug 2018

    Article  PubMed  CAS  Google Scholar 

  • Lam RW, Levitan RD (2000) Pathophysiology of seasonal affective disorder: a review. J Psychiatry Neurosci 25(5):469–480

    PubMed  CAS  Google Scholar 

  • Lee TM, Labyak SE (1995) Estrus and estrogen-induced changes in circadian-rhythms in a diurnal rodent, Octodondegus. Physiol Behav 58(3):573–585

    Google Scholar 

  • Lee TM, Labyak SE (1997) Free-running rhythms and light- and dark-pulse phase response curves for diurnal Octodon degus (rodentia). Am J Physiol Regul Integr Comp Physiol 273(1):R278–R286

    CAS  Google Scholar 

  • Levitt AJ, Joffe RT, Brecher D, MacDonald C (1993) Anxiety disorders and anxiety symptoms in a clinic sample of seasonal and non-seasonal depressives. J Affect Disord 28(1):51–56

    Article  PubMed  CAS  Google Scholar 

  • Lewy AJ, Bauer VK, Cutler NL, Sack RL, Ahmed S et al (1998) Morning vs evening light treatment of patients with winter depression. Arch Gen Psychiatry 55(10):890–896

    Article  PubMed  CAS  Google Scholar 

  • Magnusson A, Partonen T (2005) The diagnosis, symptomatology, and epidemiology of seasonal affective disorder. CNS Spectr. 10(8):625–634 quiz 621–614

    PubMed  Google Scholar 

  • Markou A, Chiamulera C, Geyer MA, Tricklebank M, Steckler T (2009) Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology 34(1):74–89

    Article  PubMed  CAS  Google Scholar 

  • McClung CA (2007) Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114(2):222–232

    Article  PubMed  CAS  Google Scholar 

  • Mendelssohn H, Yom-Tov Y (1999) Mammals of israel. Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Monteggia LM, Luikart B, Barrot M, Theobold D, Malkovska I et al (2007) Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry 61(2):187–197 Epub 2006 May 2012

    Article  PubMed  CAS  Google Scholar 

  • Monteleone P, Maj M (2008) The circadian basis of mood disorders: recent developments and treatment implications. Eur Neuropsychopharmacol 18(10):701–711

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Gould E, Manji H, Buncan M, Duman RS et al (2002) Preclinical models: status of basic research in depression. Biol Psychiatry 52(6):503–528

    Article  PubMed  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1978) “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol 51(3):291–294

    Article  PubMed  CAS  Google Scholar 

  • Preis M, Attias J, Hadar T, Nageris BI (2009) Cochlear third window in the scala vestibuli: an animal model. Otol Neurotol 30(5):657–660

    Article  PubMed  Google Scholar 

  • Prendergast BJ, Nelson RJ (2005) Affective responses to changes in day length in siberian hamsters (Phodopus sungorus). Psychoneuroendocrinology 30(5):438–452

    Article  PubMed  Google Scholar 

  • Redlin U (2001) Neural basis and biological function of masking by light in mammals: suppression of melatonin and locomotor activity. Chronobiol Int 18(5):737–758

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ, Cao BJ, Dalvi A, Holmes A (1997) Animal models of anxiety: an ethological perspective. Braz J Med Biol Res 30(3):289–304

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal NE (1993) Diagnosis and treatment of seasonal affective disorder. JAMA 270(22):2717–2720

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal NE, Sack DA, Gillin JC, Lewy AJ, Goodwin FK et al (1984) Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 41(1):72–80

    Article  PubMed  CAS  Google Scholar 

  • Saidi T, Mbarek S, Ben Chaouacha-Chekir R, Hicks D (2011) Diurnal rodents as animal models of human central vision: characterisation of the retina of the sand rat Psammomys obsesus. Graefes Arch Clin Exp Ophthalmol 249(7):1029–1037

    Article  PubMed  Google Scholar 

  • Schwimmer H, Mursu N, Haim A (2010) Effects of bright light and melatonin treatment on body temperature and melatonin secretion daily rhythms in a diurnal rodent, the fat sand rat. Chronobiol Int 27(7):1401–1419

    Article  PubMed  CAS  Google Scholar 

  • Smale L, Lee T, Nunez AA (2003) Mammalian diurnality: some facts and gaps. J Biol Rhythms 18(5):356–366

    Article  PubMed  Google Scholar 

  • Smale L, Heideman PD, French JA (2005) Behavioral neuroendocrinology in nontraditional species of mammals: things the ‘knockout’ mouse can’t tell us. Horm Behav 48(4):474–483

    Article  PubMed  CAS  Google Scholar 

  • Smale L, Nunez AA, Schwartz MD (2008) Rhythms in a diurnal brain. Biol Rhythm Res 39(3):305–318

    Article  Google Scholar 

  • Starkey NJ, Normington G, Bridges NJ (2007) The effects of individual housing on ‘anxious’ behaviour in male and female gerbils. Physiol Behav 90(4):545–552

    Article  PubMed  CAS  Google Scholar 

  • Wehr TA, Jacobsen FM, Sack DA, Arendt J, Tamarkin L et al (1986) Phototherapy of seasonal affective disorder. Time of day and suppression of melatonin are not critical for antidepressant effects. Arch Gen Psychiatry 43(9):870–875

    Article  PubMed  CAS  Google Scholar 

  • Westrin A, Lam RW (2007) Seasonal affective disorder: a clinical update. Ann Clin Psychiatry 19(4):239–246

    Article  PubMed  Google Scholar 

  • Workman JL, Nelson RJ (2011) Potential animal models of seasonal affective disorder. Neuroscience 35(3):669–679

    Google Scholar 

  • Zimliki CL, Chenault VM, Mears D (2009) Glucose-dependent and -independent electrical activity in islets of langerhans of Psammomys obesus, an animal model of nutritionally induced obesity and diabetes. Gen Comp Endocrinol 161(2):193–201

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Einat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivisky, K., Einat, H. & Kronfeld-Schor, N. Effects of morning compared with evening bright light administration to ameliorate short-photoperiod induced depression- and anxiety-like behaviors in a diurnal rodent model. J Neural Transm 119, 1241–1248 (2012). https://doi.org/10.1007/s00702-012-0783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0783-1

Keywords

Navigation