Skip to main content
Log in

Effects of aripiprazole and clozapine on the treatment of glycolytic carbon in PC12 cells

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Aripiprazole is the only atypical antipsychotic drug known to cause the phosphorylation of AMP-activated protein kinase (AMPK) in PC12 cells. However, the molecular mechanisms underlying this phosphorylation in aripiprazole-treated PC12 cells have not yet been clarified. Here, using PC12 cells, we show that these cells incubated for 24 h with aripiprazole at 50 μM and 25 mM glucose underwent a decrease in their NAD+/NADH ratio. Aripiprazole suppressed cytochrome c oxidase (COX) activity but enhanced the activities of pyruvate dehydrogenase (PDH), citrate synthase and Complex I. The changes in enzyme activities coincided well with those in NADH, NAD+, and NAD+/NADH ratio. However, the bioenergetic peril judged by the lowered COX activity might not be accompanied by excessive occurrence of apoptotic cell death in aripiprazole-treated cells, because the mitochondrial membrane potential was not decreased, but rather increased. On the other hand, when PC12 cells were incubated for 24 h with clozapine at 50 μM and 25 mM glucose, the NAD+/NADH ratio did not change. Also, the COX activity was decreased; and the PDH activity was enhanced. These results suggest that aripiprazole-treated PC12 cells responded to the bioenergetic peril more effectively than the clozapine-treated ones to return the ATP biosynthesis back toward its ordinary level. This finding might be related to the fact that aripiprazole alone causes phosphorylation of AMPK in PC12 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AAPD:

Atypical antipsychotic drug

AMPK:

AMP-activated protein kinase

Complex I:

NADH: ubiquinone oxidoreductase (mitochondrial respiratory chain complex I)

COX:

Cytochrome c oxidase

CS:

Citrate synthase

Δψm :

Mitochondrial membrane potential

Dld:

Dihydrolipoamide dehydrogenase

DMEM:

Dulbecco’s modified Eagle’s medium

EPS:

Extrapyramidal side effect

FGPD:

First-generation antipsychotic drug

HPRT:

Hypoxanthine–guanine phosphoribosyltransferase

IDH:

Isocitrate dehydrogenase

MCAD:

Medium-chain acyl-CoA dehydrogenase

PDH:

Pyruvate dehydrogenase

PDK:

Pyruvate dehydrogenase kinase

PPARα:

Peroxisome proliferator-activated receptor α

References

  • Abekawa T, Ito K, Nakagawa S, Nakato Y, Koyama T (2011) Effects of aripiprazole and haloperidol on progression to schizophrenia-like behavioural abnormalities and apoptosis in rodents. Schizophr Res 125:77–87

    Article  PubMed  Google Scholar 

  • Allison DB, Mentore JL, Heo M, Chandler LP, Cappelleri JC, Infante MC, Weiden PJ (1999) Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry 156:1686–1696

    PubMed  CAS  Google Scholar 

  • Ardizzone TD, Bradley RJ, Freeman AM III, Dwyer DS (2001) Inhibition of glucose transport in PC12 cells by the atypical antipsychotic drugs risperidone and clozapine, and structural analogs of clozapine. Brain Res 923:82–90

    Article  PubMed  CAS  Google Scholar 

  • Arnt J (1995) Differential effects of classical and newer antipsychotics on the hypermotility induced by two dose levels of d-amphetamine. Eur J Pharmacol 283:55–62

    Article  PubMed  CAS  Google Scholar 

  • Aubry J-M, Schwald M, Ballmann E, Karege F (2009) Early effects of mood stabilizers on the Akt/GSK-3β signaling pathway and on cell survival and proliferation. Psychopharmacology 205:419–429

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Frankenburg FR (1991) Clozapine—a novel antipsychotic agent. N Engl J Med 324:746–754

    Article  PubMed  CAS  Google Scholar 

  • Banno K, Fujioka T, Kikuchi T, Oshiro Y, Hiyama T, Nakagawa K (1988) Studies on 2(1H)-quinolinone derivatives as neuroleptic agents I. Synthesis and biological activities of (4-phenyl-1-piperazinyl)propoxy-2(1H)-quinolinone derivatives. Chem Pharm Bull 36:4377–4388

    Article  PubMed  CAS  Google Scholar 

  • Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J 329:191–196

    PubMed  CAS  Google Scholar 

  • Brautigam CA, Wynn RM, Chuang JL, Chuang D (2009) Subunit and catalytic component stoichiometries of an in vitro reconstituted human pyruvate dehydrogenase complex. J Biol Chem 284:13086–13098

    Article  PubMed  CAS  Google Scholar 

  • Cantó C, Auwerx J (2010) AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci 67:3407–3423

    Article  PubMed  Google Scholar 

  • Cosi C, Waget A, Rollet K, Tesori V, Newman-Tancredi A (2005) Clozapine, ziprasidone and aripiprazole but not haloperidol protect against kainic acid-induced lesion of the striatum in mice, in vivo: role of 5-HT1A receptor activation. Brain Res 1043:32–41

    Article  PubMed  CAS  Google Scholar 

  • Dwyer DS, Lu XH, Bradley RJ (2003) Cytotoxicity of conventional and atypical antipsychotic drugs in relation to glucose metabolism. Brain Res 971:31–39

    Article  PubMed  CAS  Google Scholar 

  • Gabriel JL, Milner R, Plaut GW (1985) Inhibition and activation of bovine heart NAD-specific isocitrate dehydrogenase by ATP. Arch Biochem Biophys 240:128–134

    Article  PubMed  CAS  Google Scholar 

  • Griffith RW, Saameli K (1975) Clozapine and agranulocytosis. Lancet 2:657

    Article  PubMed  CAS  Google Scholar 

  • Gulick T, Cresci S, Caira T, Moore DD, Kelly DP (1994) The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci USA 91:11012–11016

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG, Carling D (1997) The AMP-activated protein kinase—fuel gauge of the mammalian cell? Eur J Biochem 246:259–273

    Article  PubMed  CAS  Google Scholar 

  • Harris RA, Bowker-Kinley MM, Huang B, Wu P (2002) Regulation of the activity of the pyruvate dehydrogenase complex. Adv Enzyme Regul 42:249–259

    Article  PubMed  CAS  Google Scholar 

  • Houtkooper RH, Cantó C, Wanders RJ, Auwerx J (2010) Ther secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31:194–223

    Article  PubMed  CAS  Google Scholar 

  • Hünziker F, Künzle F, Schmutz J (1963) Uber ein 5-Stellung basisch substituierte 5-H Dibenzo [b, e]-1,4-diazepine. Helv Chir Acta 46:2337–2346

    Article  Google Scholar 

  • Janssen PA, Niemegeers CJ, Awouters F, Schellekens KH, Megens AA, Meert TF (1988) Pharmacology of risperidone (R 64 766), a new antipsychotic with serotonin-S2 and dopamine-D2 antagonistic properties. J Pharmacol Exp Ther 244:685–693

    PubMed  CAS  Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 45:789–796

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi T, Tottori K, Uwahodo Y, Hirose T, Miwa T, Oshiro Y, Morita S (1995) 7-{4-[4-(2,3-Dichlorophenyl)-1-piperazinyl]butyloxy}-3,4-dihydro-2(1H)-quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J Pharmacol Exp Ther 274:329–336

    PubMed  CAS  Google Scholar 

  • Kinon BJ, Lieberman JA (1996) Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology 124:2–34

    Article  PubMed  CAS  Google Scholar 

  • Koprivica V, Regardie K, Wolff C, Fernalld R, Murphy JJ, Kambayashi J, Kikuchi T, Jordan S (2011) Aripiprazole protects cortical neurons from glutamate toxicity. Eur J Pharmacol 651:73–76

    Article  PubMed  CAS  Google Scholar 

  • Kurosawa S, Hashimoto E, Ukai W, Toki S, Saito S, Saito T (2007) Olanzapine potentiates neuronal survival and neural stem cell differentiation: regulation of endoplasmic reticulum stress response proteins. J Neural Transm 114:1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Leysen JE, Gommeren W, Eens A, de Chaffoy de Courcelles D, Stoof JC, Janssen PA (1988) Biochemical profile of risperidone, a new antipsychotic. J Pharmacol Exp Ther 247:661–670

    Google Scholar 

  • Li XM, Chlan-Fourney J, Juorio AV, Bennet VL, Shrikhande S, Keegan DL, Qi J, Boulton AA (1999) Differential effects of Olanzapine on the gene expression of superoxide dismutase and the low affinity nerve growth factor receptor. J Neurosci Res 56:72–75

    Article  PubMed  CAS  Google Scholar 

  • Lieberman JA, Bymaster FP, Meltzer HY, Deutch AY, Duncan GE, Marx CE, Aprille JR, Dwyer DS, Li XM, Mahadik SP, Duman RS, Porter JH, Modica-Napolitano JS, Newton SS, Csernansky JG (2008) Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol Rev 60:358–403

    Article  PubMed  CAS  Google Scholar 

  • Lu X-H, Bradley RJ, Dwyer DS (2004) Olanzapine produces trophic effects in vitro and stimulates phosphorylation of Akt/PKB, ERK1/2, and the mitogen-activated protein kinase. Brain Res 1011:58–68

    Article  PubMed  CAS  Google Scholar 

  • Matsuo T, Izumi Y, Kume T, Takada-Takatori Y, Sawada H, Akaike A (2010) Protective effect of aripiprazole against glutamate cytotoxicity in dopaminergic neurons of rat mesencephalic cultures. Neurosci Lett 481:78–81

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY (1989) Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology 99(Suppl):S18–S27

    Article  PubMed  Google Scholar 

  • Migler BM, Warawa EJ, Malick JB (1993) Seroquel: behavioral effects in conventional and novel tests for atypical antipsychotic drug. Psychopharmacology 112:299–307

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Duncan GE, Marx CE, Lieberman JA (2005) Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 10:79–104

    Article  PubMed  CAS  Google Scholar 

  • Moore NA, Tye NC, Axton MS, Risius FC (1992) The behavioral pharmacology of olanzapine, a novel “atypical” antipsychotic agent. J Pharmacol Exp Ther 262:545–551

    PubMed  CAS  Google Scholar 

  • Nasrallah HA (2008) Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol Psychiatry 13:27–35

    Article  PubMed  CAS  Google Scholar 

  • Oshiro Y, Sato S, Kurahashi N, Tanaka T, Kikuchi T, Tottori K, Uwahodo Y, Nishi T (1998) Novel antipsychotic agents with dopamine autoreceptor agonist properties: synthesis and pharmacology of 7-[4-(4-Phenyl-1-piperazinyl)butoxy]-3,4-dihydro-2(1H)-quinolinone derivatives. J Med Chem 41:658–667

    Article  PubMed  CAS  Google Scholar 

  • Ota M, Mori K, Nakashima A, Kaneko YS, Fujiwara K, Itoh M, Nagasaka A, Ota A (2002) Peripheral injection of risperidone, an atypical antipsychotic, alters the bodyweight gain of rats. Clin Exp Pharmacol Physiol 29:980–989

    Article  PubMed  CAS  Google Scholar 

  • Ota M, Mori K, Nakashima A, Kaneko YS, Takahashi H, Ota A (2005a) Resistance to excessive bodyweight gain in risperidone-injected rats. Clin Exp Pharmacol Physiol 32:279–287

    Article  PubMed  CAS  Google Scholar 

  • Ota M, Mori K, Nakashima A, Kaneko YS, Takami G, Ota A (2005b) mRNA expression levels of leptin-related substances can be modified in risperidone-injected rats. Biog Amines 19:299–308

    Article  CAS  Google Scholar 

  • Ota M, Nakashima A, Kaneko YS, Mori K, Takami G, Ota A (2007) Risperidone reduces mRNA expression levels of Sulfonylurea Receptor 1 and TASK1 in PC12 cells. Neurosci Lett 412:254–258

    Article  PubMed  CAS  Google Scholar 

  • Park SW, Lee JG, Ha EK, Choi SM, Cho HY, Seo MK, Kim YH (2009) Differential effects of aripiprazole and haloperidol on BDNF-mediated signal changes in SH-SY5Y cells. Eur Neuropsychopharmacol 19:356–362

    Article  PubMed  CAS  Google Scholar 

  • Park SW, Lee CH, Lee JG, Kim LW, Shin BS, Lee BJ, Kim YH (2011) Protective effects of atypical antipsychotic drugs against MPP+-induced oxidative stress in PC12 cells. Neurosci Res 69:283–290

    Article  PubMed  CAS  Google Scholar 

  • Patel MS, Korotchkina LG (2001) Regulation of mammalian pyruvate dehydrogenase complex by phosphorylation: complexity of multiple phosphorylation sites and kinases. Exp Mol Med 33:191–197

    PubMed  CAS  Google Scholar 

  • Pothos EN, Przedborski S, Davila V, Schmitz Y, Sulzer D (1998) D2-like dopamine autoreceptor activation reduces quantal size in PC12 cells. J Neurosci 18:5575–5585

    PubMed  CAS  Google Scholar 

  • Quinn JC, Johnson-Farley NN, Yoon J, Cowen DS (2002) Activation of extracellular-regulated kinase by 5-hydroxytryptamine2A receptors in PC12 cells is protein kinase C-independent and requires calmodulin and tyrosine kinases. J Pharmacol Exp Ther 303:746–752

    Article  PubMed  CAS  Google Scholar 

  • Ronnett GV, Ramamurthy S, Kleman AM, Landree LE, Aja S (2009) AMPK in the brain: its roles in energy balance and neuroprotection. J Neurochem 109(Suppl 1):17–23

    Article  PubMed  CAS  Google Scholar 

  • Rutter GA, Denton RM (1989) The binding of Ca2+ ions to pig heart NAD+-isocitrate dehydrogenase and the 2-oxoglutarate dehydrogenase complex. Biochem J 263:453–462

    PubMed  CAS  Google Scholar 

  • Schmidt AW, Lebel LA, Howard HR Jr, Zorn SH (2001) Ziprasidone: a novel antipsychotic agent with a unique human receptor binding profile. Eur J Pharmacol 425:197–201

    Article  PubMed  CAS  Google Scholar 

  • Seeger TF, Seymour PA, Schmidt AW, Zorn SH, Schulz DW, Lebel LA, McLean S, Guanowsky V, Howard HR, Lowe JA III, Heym J (1995) Ziprasidone (CP-88,059): a new antipsychotic with combined dopamine and serotonin receptor antagonist activity. J Pharmacol Exp Ther 275:101–113

    PubMed  CAS  Google Scholar 

  • Shadach E, Gaisler I, Schiller D, Weiner I (2000) The latent inhibition model dissociates between clozapine, haloperidol, and ritanserin. Neuropsychopharmacology 23:151–161

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Fan Y, Dai H, Fu Q, Hu W, Chen Z (2007) Neuroprotective effect of carnosine on necrotic cell death in PC12 cells. Neurosci Lett 414:145–149

    Article  PubMed  CAS  Google Scholar 

  • Shinohara Y, Daikoku T, Kajimoto K, Shima A, Yamazaki N, Terada H (2001) Expression of NAD+-dependent isocitrate dehydrogenase in brown adipose tissue. Biochem Biophys Res Commun 281:634–638

    Article  PubMed  CAS  Google Scholar 

  • Takami G, Ota M, Nakashima A, Kaneko YS, Mori K, Nagatsu T, Ota A (2010) Effects of atypical antipsychotics and haloperidol on PC12 cells: only aripiprazole phosphorylates AMP-activated protein kinase. J Neural Transm 117:1139–1153

    Article  PubMed  CAS  Google Scholar 

  • Wakade CG, Mahadik SP, Waller JL, Chiu F-C (2002) Atypical neuroleptics stimulate neurogenesis in adult rat brain. J Neurosci Res 69:72–79

    Article  PubMed  CAS  Google Scholar 

  • Wei Z, Bai O, Richardson JS, Mousseau DD, Li X-M (2003) Olanzapine protects PC12 cells from oxidative stress induced by hydrogen peroxide. J Neurosci Res 73:364–368

    Article  PubMed  CAS  Google Scholar 

  • Wirshing DA, Boyd JA, Meng LR, Ballon JS, Marder SR, Wirshing WC (2002) The effects of novel antipsychotics on glucose and lipid levels. J Clin Psychiatry 63:856–865

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Inskeep K, Bowker-Kinley MM, Popov KM, Harris RA (1999) Mechanism responsible for inactivation of skeletal muscle pyruvate dehydrogenase complex in starvation and diabetes. Diabetes 48:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Amuro N, Goto Y, Okazaki T (1990) Structural organization of the rat cytochrome c oxidase subunit IV gene. J Biol Chem 265:7687–7692

    PubMed  CAS  Google Scholar 

  • Yang TT, Wang SJ (2008) Aripiprazole and its human metabolite OPC14857 reduce, through a presynaptic mechanism, glutamate release in rat prefrontal cortex: possible relevance to neuroprotective interventions in schizophrenia. Synapse 62:804–818

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants-in-aid from Fujita Health University to AO. Ziprasidone was supplied by Pfizer (New York, NY, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Ota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ota, A., Nakashima, A., Kaneko, Y.S. et al. Effects of aripiprazole and clozapine on the treatment of glycolytic carbon in PC12 cells. J Neural Transm 119, 1327–1342 (2012). https://doi.org/10.1007/s00702-012-0782-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0782-2

Keywords

Navigation