Skip to main content
Log in

The possible role of the kynurenine pathway in anhedonia in adolescents

  • Biological Child and Adolescent Psychiatry - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

To address the heterogeneous nature of adolescent major depression (MDD), we investigated anhedonia, a core symptom of MDD. We recently reported activation of the kynurenine pathway (KP), a central neuroimmunological pathway which metabolizes tryptophan (TRP) into kynurenine (KYN) en route to several neurotoxins, in a group of highly anhedonic MDD adolescents. In this study, we aimed to extend our prior work and examine the relationship between KP activity and anhedonia, measured quantitatively, in a group of MDD adolescents and in a combined group of MDD and healthy control adolescents. Thirty-six adolescents with MDD (22 medication-free) and 20 controls were included in the analysis. Anhedonia scores were generated based on clinician- and subject-rated assessments and a semi-structured clinician interview. Blood KP metabolites, collected in the AM after an overnight fast, were measured using high-performance liquid chromatography. The rate-limiting enzyme of the KP, indoleamine 2,3-dioxygenase (IDO), was estimated by the ratio of KYN/TRP. Pearson correlation tests were used to assess correlations between anhedonia scores and KP measures while controlling for MDD severity. IDO activity and anhedonia scores were positively correlated in the group psychotropic medication-free adolescents with MDD (r = 0.42, P = 0.05) and in a combined group of MDD subjects and healthy controls (including medicated patients: r = 0.30, P = 0.02; excluding medicated patients: r = 0.44, P = 0.004). In conclusions, our findings provide further support for the role for the KP, particularly IDO, in anhedonia in adolescent MDD. These results emphasize the importance of dimensional approaches in the investigation of psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amori L, Guidetti P, Pellicciari R, Kajii Y, Schwarcz R (2009) On the relationship between the two branches of the kynurenine pathway in the rat brain in vivo. J Neurochem 109(2):316–325

    Article  PubMed  CAS  Google Scholar 

  • Anderson IM, Parry-Billings M, Newsholme EA, Poortmans JR, Cowen PJ (1990) Decreased plasma tryptophan concentration in major depression: relationship to melancholia and weight loss. J Affect Disord 20(3):185–191

    Article  PubMed  CAS  Google Scholar 

  • Araujo DM, Cherry SR, Tatsukawa KJ, Toyokuni T, Kornblum HI (2000) Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington’s disease. Exp Neurol 166(2):287–297

    Article  PubMed  CAS  Google Scholar 

  • Badawy AB (2009) Plasma free tryptophan revisited: what you need to know and do before measuring it. J Psychopharmacol 24:809–815

    Google Scholar 

  • Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH (2009) Indoleamine 2, 3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol 41(3):467–471

    Article  PubMed  CAS  Google Scholar 

  • Beck AT, Guth D, Steer RA, Ball R (1997) Screening for major depression disorders in medical inpatients with the Beck Depression Inventory for Primary Care. Behav Res Ther 35(8):785–791

    Article  PubMed  CAS  Google Scholar 

  • Beskid M, Finkiewicz-Murawiejska L (1992) Quinolinic acid: effects on brain catecholamine and c-AMP content during l-dopa and reserpine administration. Exp Toxicol Pathol 44(2):66–69

    Article  PubMed  CAS  Google Scholar 

  • Boasso A, Herbeuval JP, Hardy AW, Winkler C, Shearer GM (2005) Regulation of indoleamine 2, 3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells. Blood 105(4):1574–1581

    Article  PubMed  CAS  Google Scholar 

  • Bonaccorso S, Marino V, Puzella A, Pasquini M, Biondi M, Artini M, Almerighi C, Verkerk R, Meltzer H, Maes M (2002) Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotonergic system. J Clin Psychopharmacol 22(1):86–90

    Article  PubMed  CAS  Google Scholar 

  • Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D, Miller AH (2003a) Interferon-alpha-induced changes in tryptophan metabolism. Relationship to depression and paroxetine treatment. Biol Psychiatry 54(9):906–914

    Article  PubMed  CAS  Google Scholar 

  • Capuron L, Pagnoni G, Demetrashvili MF, Lawson DH, Fornwalt FB, Woolwine B, Berns GS, Nemeroff CB, Miller AH (2007) Basal ganglia hypermetabolism and symptoms of fatigue during interferon-alpha therapy. Neuropsychopharmacology 32(11):2384–2392

    Article  PubMed  CAS  Google Scholar 

  • Capuron L, Raison CL, Musselman DL, Lawson DH, Nemeroff CB, Miller AH (2003b) Association of exaggerated HPA axis response to the initial injection of interferon-alpha with development of depression during interferon-alpha therapy. Am J Psychiatry 160(7):1342–1345

    Article  PubMed  Google Scholar 

  • Capuron L, Ravaud A, Neveu PJ, Miller AH, Maes M, Dantzer R (2002) Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry 7(5):468–473

    Article  PubMed  CAS  Google Scholar 

  • Cowen PJ, Parry-Billings M, Newsholme EA (1989) Decreased plasma tryptophan levels in major depression. J Affect Disord 16(1):27–31

    Article  PubMed  CAS  Google Scholar 

  • Curzon G, Bridges PK (1970) Tryptophan metabolism in depression. J Neurol Neurosurg Psychiatry 33(5):698–704

    Article  PubMed  CAS  Google Scholar 

  • Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR (2010) Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry 68(8):748–754

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Olsson SK, Engberg G (2009) Pharmacological manipulation of kynurenic acid: potential in the treatment of psychiatric disorders. CNS Drugs 23(2):91–101

    Article  PubMed  CAS  Google Scholar 

  • Gabbay V, Klein RG, Alonso CM, Babb JS, Nishawala M, De Jesus G, Hirsch GS, Hottinger-Blanc PM, Gonzalez CJ (2009a) Immune system dysregulation in adolescent major depressive disorder. J Affect Disord 115(1–2):177–182

    Article  PubMed  Google Scholar 

  • Gabbay V, Klein RG, Guttman LE, Babb JS, Alonso CM, Nishawala M, Katz Y, Gaite MR, Gonzalez CJ (2009b) A preliminary study of cytokines in suicidal and nonsuicidal adolescents with major depression. J Child Adolesc Psychopharmacol 19(4):423–430

    Article  PubMed  Google Scholar 

  • Gabbay V, Klein RG, Katz Y, Mendoza S, Guttman LE, Alonso CM, Babb JS, Hirsch GS, Liebes L (2010a) The possible role of the kynurenine pathway in adolescent depression with melancholic features. J Child Psychol Psychiatry 51(8):935–943

    Google Scholar 

  • Gabbay V, Liebes L, Katz Y, Liu S, Mendoza S, Babb JS, Klein RG, Gonen O (2010b) The kynurenine pathway in adolescent depression: preliminary findings from a proton MR spectroscopy study. Prog Neuropsychopharmacol Biol Psychiatry 34(1):37–44

    Article  PubMed  CAS  Google Scholar 

  • Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M, Lim JT, Faget KY, Muffat JA, Scarpa RC, Chylack LT Jr, Bowden EF, Tanzi RE, Bush AI (2000) 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry 39(24):7266–7275

    Article  PubMed  CAS  Google Scholar 

  • Hayley S (2011) Toward an anti-inflammatory strategy for depression. Front Behav Neurosci 5:19

    Article  PubMed  Google Scholar 

  • Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5:15

    Article  PubMed  Google Scholar 

  • Heyes MP, Ellis RJ, Ryan L, Childers ME, Grant I, Wolfson T, Archibald S, Jernigan TL (2001) Elevated cerebrospinal fluid quinolinic acid levels are associated with region-specific cerebral volume loss in HIV infection. Brain 124(Pt 5):1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Irwin MR, Miller AH (2007) Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav Immun 21(4):374–383

    Article  PubMed  CAS  Google Scholar 

  • Joiner TE, Brown JS, Metalsky GI (2003) A test of the tripartite model’s prediction of anhedonia’s specificity to depression: patients with major depression versus patients with schizophrenia. Psychiatry Res 119(3):243–250

    Article  PubMed  Google Scholar 

  • Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, Williamson D, Ryan N (1997) Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 36(7):980–988

    Article  PubMed  CAS  Google Scholar 

  • Kema IP, de Vries EG, Muskiet FA (2000) Clinical chemistry of serotonin and metabolites. J Chromatogr B Biomed Sci Appl 747(1–2):33–48

    Article  PubMed  CAS  Google Scholar 

  • Kubera M, Lin AH, Kenis G, Bosmans E, van Bockstaele D, Maes M (2001) Anti-inflammatory effects of antidepressants through suppression of the interferon-gamma/interleukin-10 production ratio. J Clin Psychopharmacol 21(2):199–206

    Article  PubMed  CAS  Google Scholar 

  • Kurachi M, Sumiyoshi T, Shibata R, Sun YJ, Uehara T, Tanii Y, Suzuki M (2000) Changes in limbic dopamine metabolism following quinolinic acid lesions of the left entorhinal cortex in rats. Psychiatry Clin Neurosci 54(1):83–89

    Article  PubMed  CAS  Google Scholar 

  • Kwidzinski E, Bechmann I (2007) IDO expression in the brain: a double-edged sword. J Mol Med 85(12):1351–1359

    Article  PubMed  Google Scholar 

  • Leventhal AM, Chasson GS, Tapia E, Miller EK, Pettit JW (2006) Measuring hedonic capacity in depression: a psychometric analysis of three anhedonia scales. J Clin Psychol 62(12):1545–1558

    Article  PubMed  Google Scholar 

  • Levine J, Barak Y, Chengappa KN, Rapoport A, Rebey M, Barak V (1999) Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology 40(4):171–176

    Article  PubMed  CAS  Google Scholar 

  • Lindqvist D, Janelidze S, Hagell P, Erhardt S, Samuelsson M, Minthon L, Hansson O, Bjorkqvist M, Traskman-Bendz L, Brundin L (2009) Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol Psychiatry 66(3):287–292

    Article  PubMed  CAS  Google Scholar 

  • Maes M, Song C, Lin AH, Bonaccorso S, Kenis G, De Jongh R, Bosmans E, Scharpe S (1999) Negative immunoregulatory effects of antidepressants: inhibition of interferon-gamma and stimulation of interleukin-10 secretion. Neuropsychopharmacology 20(4):370–379

    Article  PubMed  CAS  Google Scholar 

  • Maes M, Wauters A, Verkerk R, Demedts P, Neels H, Van Gastel A, Cosyns P, Scharpe S, Desnyder R (1996) Lower serum l-tryptophan availability in depression as a marker of a more generalized disorder in protein metabolism. Neuropsychopharmacology 15(3):243–251

    Article  PubMed  CAS  Google Scholar 

  • Majer M, Welberg LA, Capuron L, Pagnoni G, Raison CL, Miller AH (2008) IFN-alpha-induced motor slowing is associated with increased depression and fatigue in patients with chronic hepatitis C. Brain Behav Immun 22(6):870–880

    Article  PubMed  CAS  Google Scholar 

  • McNally L, Bhagwagar Z, Hannestad J (2008) Inflammation, glutamate, and glia in depression: a literature review. CNS Spectr 13(6):501–510

    PubMed  Google Scholar 

  • Miller AH (2009) Norman Cousins Lecture. Mechanisms of cytokine-induced behavioral changes: psychoneuroimmunology at the translational interface. Brain Behav Immun 23(2):149–158

    Article  PubMed  CAS  Google Scholar 

  • Moreau M, Andre C, O’Connor JC, Dumich SA, Woods JA, Kelley KW, Dantzer R, Lestage J, Castanon N (2008) Inoculation of Bacillus Calmette-Guerin to mice induces an acute episode of sickness behavior followed by chronic depressive-like behavior. Brain Behav Immun 22(7):1087–1095

    Article  PubMed  CAS  Google Scholar 

  • Murray MF (2007) The human indoleamine 2, 3-dioxygenase gene and related human genes. Curr Drug Metab 8(3):197–200

    Article  PubMed  CAS  Google Scholar 

  • Myint AM, Kim YK, Verkerk R, Scharpe S, Steinbusch H, Leonard B (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98(1–2):143–151

    Article  PubMed  CAS  Google Scholar 

  • O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2008) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14(5):511–522

    Google Scholar 

  • Okuda S, Nishiyama N, Saito H, Katsuki H (1998) 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70(1):299–307

    Article  PubMed  CAS  Google Scholar 

  • Pizzagalli DA, Jahn AL, O’Shea JP (2005) Toward an objective characterization of an anhedonic phenotype: a signal-detection approach. Biol Psychiatry 57(4):319–327

    Article  PubMed  Google Scholar 

  • Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, Spivey JR, Saito K, Miller AH (2009) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 15(4):393–403

    Google Scholar 

  • Schrocksnadel K, Wirleitner B, Winkler C, Fuchs D (2006) Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 364(1–2):82–90

    Article  PubMed  Google Scholar 

  • Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219(4582):316–318

    Article  PubMed  CAS  Google Scholar 

  • Shuto H, Kataoka Y, Horikawa T, Fujihara N, Oishi R (1997) Repeated interferon-alpha administration inhibits dopaminergic neural activity in the mouse brain. Brain Res 747(2):348–351

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Tsunoda M, Uehara T, Tanaka K, Itoh H, Sumiyoshi C, Kurachi M (2004) Enhanced locomotor activity in rats with excitotoxic lesions of the entorhinal cortex, a neurodevelopmental animal model of schizophrenia: behavioral and in vivo microdialysis studies. Neurosci Lett 364(2):124–129

    Article  PubMed  CAS  Google Scholar 

  • Tremblay LK, Naranjo CA, Graham SJ, Herrmann N, Mayberg HS, Hevenor S, Busto UE (2005) Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probe. Arch Gen Psychiatry 62(11):1228–1236

    Article  PubMed  Google Scholar 

  • Wichers MC, Koek GH, Robaeys G, Verkerk R, Scharpe S, Maes M (2005) IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry 10(6):538–544

    Article  PubMed  CAS  Google Scholar 

  • Wu HQ, Schwarcz R, Shepard PD (1994) Excitatory amino acid-induced excitation of dopamine-containing neurons in the rat substantia nigra: modulation by kynurenic acid. Synapse 16(3):219–230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from NIH (AT002395, MH077072, AT004576), the American Foundation for Suicide Prevention, the NYU School of Medicine General Clinical Research Center grant (M01-RR00096), the Leon Levy Foundation, and generous gifts from the Anita Saltz Foundation and from Bruce and Claude Wasserstein.

Statement regarding human subjects: All procedures described in this manuscript have been approved by the NYU Institutional Review Board and New York City Health and Hospital Corporation; procedures comply with the ethical standards established in the 1964 Declaration of Helsinki. All subjects involved in the study provided informed consent prior to inclusion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilma Gabbay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabbay, V., Ely, B.A., Babb, J. et al. The possible role of the kynurenine pathway in anhedonia in adolescents. J Neural Transm 119, 253–260 (2012). https://doi.org/10.1007/s00702-011-0685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-011-0685-7

Keywords

Navigation