Skip to main content
Log in

Time course of changes in the concentrations of monoamines in the brain structures of pentylenetetrazole-kindled rats

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

This work attempted to “biochemically” map the brain structures that are recruited at the different stages of pentylenetetrazole (PTZ) kindling (in a model of temporal lobe epilepsy induced by a repeated, systemic administration of PTZ, at a subconvulsive dose of 35 mg/kg). We observed substantial changes in the levels of noradrenaline (NA), 5-hydroxytryptamine (5-HT), dopamine (DA), and their metabolites in the brain structures known to be recruited in the course of kindling, i.e., the piriform, entorhinal and prefrontal cortices, and the hippocampus (in vitro). Kindling of seizures induced time-, seizure-, and structure-dependent increases in the local levels of NA, 5-HT, 5-hydroxyindolacetic acid, DA, homovanillic acid, and 3,4-dihydroxyphenylacetic acid. Surprisingly, limited changes in monoamines (NA and 5-HT) were found in the amygdala. The most potent and widespread effects concerned the serotonergic system, indicating a possible protective role of its enhanced activity in the control of the kindling of seizures. These new data indicate a pattern of changes in the basal activity of local monoaminergic innervation of brain limbic structures, accompanying the induction and propagation of seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alam AM, Starr MS (1992) Dopaminergic modulation of pilocarpine-induced motor seizures in the rat: the role of hippocampal dopamine D1 receptors. Eur J Pharmacol 222:227–232

    Article  CAS  PubMed  Google Scholar 

  • Alam AM, Starr MS (1993) Dopaminergic modulation of pilocarpine-induced motor seizures in the rat: the role of hippocampal D2 receptors. Neuroscience 53:425–431

    Article  CAS  PubMed  Google Scholar 

  • Al-Tajir G, Starr MS (1993) Disordered dopamine neurotransmission in the striatum of rats undergoing pilocarpine-induced generalized seizures, as revealed by microdialysis. J Neural Transm Park Dis Dement Sect 5:89–100

    Article  CAS  PubMed  Google Scholar 

  • Applegate CD, Burchfiel JL, Konkol RJ (1986) Kindling antagonism: effects of norepinephrine depletion on kindled seizure suppression after concurrent, alternate stimulation in rats. Exp Neurol 94:379–390

    Article  CAS  PubMed  Google Scholar 

  • Baf MH, Subhash MN, Lakshmana KM, Rao BS (1994) Alterations in monoamine levels in discrete regions of rat brain after chronic administration of carbamazepine. Neurochem Res 19:1139–1143

    Article  CAS  PubMed  Google Scholar 

  • Barone P, Parashos SA, Palma V, Marin C, Campanella G, Chase TN (1990) Dopamine D1 receptor modulation of pilocarpine-induced convulsions. Neuroscience 34:209–217

    Article  CAS  PubMed  Google Scholar 

  • Barry DI, Kikvadze I, Brundin P, Bolwig TG, Björklund A, Lindvall O (1987) Grafted noradrenergic neurons suppress seizure development in kindling-induced epilepsy. Proc Natl Acad Sci USA 84:8712–8715

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Grecksch G, Thiemann W, Hoellt V (2000) Pentylenetetrazol-kindling modulates stimulated dopamine release in the nucleus accumbens. Pharmacol Biochem Behav 66:425–428

    Article  CAS  PubMed  Google Scholar 

  • Biggs CS, Pearce BR, Fowler LJ, Whitton PS (1992) Regional effects of sodium valproate on extracellular concentrations of 5-hydroxytryptamine, dopamine, and their metabolites in the rat brain: an in vivo microdialysis study. J Neurochem 59:1702–1708

    Article  CAS  PubMed  Google Scholar 

  • Bo P, Soragna D, Marchioni E, Candeloro E, Albergati A, Savoldi F (1995) Role of dopamine D-1 and D-2 antagonists in a model of focal epilepsy induced by electrical stimulation of hippocampus and amygdala in the rabbit. Prog Neuropsychopharmacol Biol Psychiatry 19:917–930

    Article  CAS  PubMed  Google Scholar 

  • Browning RA, Hoffmann WE, Simonton RL (1978) Changes in seizure susceptibility after intracerebral treatment with 5,7-dihydroxytryptamine: role of serotonergic neurons. Ann N Y Acad Sci 305:437–456

    Article  CAS  PubMed  Google Scholar 

  • Browning RA, Wade DR, Marcinczyk M, Long GL, Jobe PC (1989) Regional brain abnormalities in norepinephrine uptake and dopamine beta-hydroxylase activity in the genetically epilepsy-prone rat. J Pharmacol Exp Ther 249:229–235

    CAS  PubMed  Google Scholar 

  • Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y (2004) Anticonvulsant action of hippocampal dopamine and serotonin is independently mediated by D2 and 5-HT1A receptors. J Neurochem 89:834–843

    Article  CAS  PubMed  Google Scholar 

  • Colino A, Halliwell JV (1987) Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature 328:73–77

    Article  CAS  PubMed  Google Scholar 

  • Corcoran ME (1988) Characteristics of accelerated kindling after depletion of noradrenaline in adult rats. Neuropharmacology 27:1081–1084

    Article  CAS  PubMed  Google Scholar 

  • Dailey JW, Yan QS, Mishra PK, Burger RL, Jobe PC (1992) Effects of fluoxetine on convulsions and brain serotonin as detected by microdialysis in genetically epilepsy-prone rats. J Pharmacol Exp Ther 260:533–540

    CAS  PubMed  Google Scholar 

  • Dazzi L, Serra M, Porceddu ML, Sanna A, Chessa MF, Biggio G (1997) Enhancement of basal and pentylenetetrazol (PTZ)-stimulated dopamine release in the brain of freely moving rats by PTZ-induced kindling. Synapse 26:351–358

    Article  CAS  PubMed  Google Scholar 

  • During MJ, Craig JS, Hernandez TD, Anderson GM, Gallager DW (1992) Effect of amygdala kindling on the in vivo release of GABA and 5-HT in the dorsal raphe nucleus in freely moving rats. Brain Res 584:36–44

    Article  CAS  PubMed  Google Scholar 

  • Favale E, Rubino V, Mainardi P, Lunardi G, Albano C (1995) Anticonvulsant effect of fluoxetine in humans. Neurology 45:1926–1927

    CAS  PubMed  Google Scholar 

  • Filakovszky J, Gerber K, Bagdy G (1999) A serotonin-1A receptor agonist and an N-methyl-d-aspartate receptor antagonist oppose each others effects in a genetic rat epilepsy model. Neurosci Lett 261:89–92

    Article  CAS  PubMed  Google Scholar 

  • Gellman RL, Aghajanian GK (1993) Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons. Brain Res 600:63–73

    Article  CAS  PubMed  Google Scholar 

  • Glue P, Costello MJ, Pert A, Nott DJ (1990) Regional neurotransmitter responses after acute and chronic electroconvulsive shock. Psychopharmacology 100:60–65

    Article  CAS  PubMed  Google Scholar 

  • Hiramatsu MK, Ogawa K, Kabuto H, Mori A (1987) Reduced uptake and release of 5-hydroxytryptamine and taurine in the cerebral cortex of epileptic El mice. Epilepsy Res 1:40–44

    Article  CAS  PubMed  Google Scholar 

  • Jobe PC, Browning RA (2005) The serotonergic and noradrenergic effects of antidepressant drugs are anticonvulsant, not proconvulsant. Epilepsy Behav 7:602–619

    Article  PubMed  Google Scholar 

  • Jobe PC, Laird HE 2nd, Ko KH, Ray T, Dailey JW (1982) Abnormalities in monoamine levels in the central nervous system of the genetically epilepsy-prone rat. Epilepsia 23:359–366

    Article  CAS  PubMed  Google Scholar 

  • Jobe PC, Dailey JW, Wernicke JF (1999) A noradrenergic and serotonergic hypothesis of the linkage between epilepsy and affective disorders. Crit Rev Neurobiol 13:317–356

    CAS  PubMed  Google Scholar 

  • Kaneda N, Asano M, Nagatsu T (1986) Simple method for simultaneous determination of acetylcholine, choline, noradrenaline, dopamine and serotonin in brain tissue by high-performance liquid chromatography with electrochemical detection. J Chromatogr 360:211–218

    Article  CAS  PubMed  Google Scholar 

  • Kanner AM, Balabanov A (2002) Depression and epilepsy: how closely related are they? Neurology 58:S27–S39

    PubMed  Google Scholar 

  • Kilian M, Frey HH (1973) Central monoamines and convulsive thresholds in mice and rats. Neuropharmacology 12:681–692

    Article  CAS  PubMed  Google Scholar 

  • Krahl SE, Clark KB, Smith DC, Browning RA (1998) Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia 39:709–714

    Article  CAS  PubMed  Google Scholar 

  • Löscher W, Pagliusi SR, Müller F (1984) L-5-hydroxytryptophan. Correlation between anticonvulsant effect and increases in levels of 5-hydroxyindoles in plasma and brain. Neuropharmacology 23:1041–1048

    Article  PubMed  Google Scholar 

  • McIntyre DC, Edson N (1982) Effect of norepinephrine depletion on dorsal hippocampus kindling in rats. Exp Neurol 77:700–704

    Article  CAS  PubMed  Google Scholar 

  • McIntyre DC, Wong RK (1986) Cellular and synaptic properties of amygdala-kindled piriform cortex in vitro. J Neurophysiol 55:1295–1307

    CAS  PubMed  Google Scholar 

  • McIntyre DC, Saari M, Pappas BA (1979) Potentiation of amygdala kindling in adult or infant rats by injection of 6-hydroxydopamine. Exp Neurol 63:527–544

    Article  CAS  PubMed  Google Scholar 

  • McIntyre DC, Edson N, Chão G, Knowles V (1982) Differential effect of acute vs chronic desmethylimipramine on the rate of amygdale kindling in rats. Exp Neurol 78:158–166

    Article  CAS  PubMed  Google Scholar 

  • Merrill MA, Clough RW, Dailey JW, Jobe PC, Browning RA (2007) Localization of the serotonergic terminal fields modulating seizures in the genetically epilepsy-prone rat. Epilepsy Res 76:93–102

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Okada M, Kawata Y, Zhu G, Kamata A, Kaneko S (2001) Determination of effects of antiepileptic drugs on SNAREs-mediated hippocampal monoamine release using in vivo microdialysis. Br J Pharmacol 134:507–520

    Article  CAS  PubMed  Google Scholar 

  • Ogren SO, Pakh B (1993) Effects of dopamine D1 and D2 receptor agonists and antagonists on seizures induced by chemoconvulsants in mice. Pharmacol Toxicol 72:213–220

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Prendiville S, Gale K (1993) Anticonvulsant effect of fluoxetine on focally evoked limbic motor seizures in rats. Epilepsia 34:381–384

    Article  CAS  PubMed  Google Scholar 

  • Racine R, Coscina DV (1979) Effects of midbrain raphe lesions or systemic p-chlorophenylalanine on the development of kindled seizures in rats. Brain Res Bull 4:1–7

    Article  CAS  PubMed  Google Scholar 

  • Racine RJ, Gartner JG, Burnham WM (1972) Epileptiform activity and neural plasticity in limbic structures. Brain Res 47:262–268

    Article  CAS  PubMed  Google Scholar 

  • Salgado D, Alkadhi KA (1995) Inhibition of epileptiform activity by serotonin in rat CA1 neurons. Brain Res 669:176–182

    Article  CAS  PubMed  Google Scholar 

  • Schwabe K, Ebert U, Löscher W (2004) The central piriform cortex: anatomical connections and anticonvulsant effect of GABA elevation in the kindling model. Neuroscience 126:727–741

    Article  CAS  PubMed  Google Scholar 

  • Segal M (1975) Physiologic and pharmacological evidence for a serotonergic projection to the hippocampus. Brain Res 94:115–131

    Article  CAS  PubMed  Google Scholar 

  • Shouse MN, Staba RJ, Ko PY, Saquib SF, Farber PR (2001) Monoamines and seizures: microdialysis findings in locus ceruleus and amygdala before and during amygdala kindling. Brain Res 892:176–192

    Article  CAS  PubMed  Google Scholar 

  • Starr MS (1996) The role of dopamine in epilepsy. Synapse 22:159–194

    Article  CAS  PubMed  Google Scholar 

  • Statnick MA, Maring-Smith ML, Clough RW, Wang C, Dailey JW, Jobe PC, Browning RA (1996) Effect of 5,7-dihydroxytryptamine on audiogenic seizures in genetically epilepsy-prone rats. Life Sci 59:1763–1771

    Article  CAS  PubMed  Google Scholar 

  • Szyndler J, Maciejak P, Turzyńska D, Sobolewska A, Taracha E, Skórzewska A, Lehner M, Bidziński A, Hamed A, Wisłowska-Stanek A, Krzaścik P, Płaźnik A (2009) Mapping of c-Fos expression in the rat brain during the evolution of pentylenetetrazol-kindled seizures. Epilepsy Behav 16:216–224

    Article  PubMed  Google Scholar 

  • Trindade-Filho E, de Castro-Neto EF, de A Carvalho R, Lima E, Scorza FA, Amado D, Naffah-Mazzacoratti M, Cavalheiro E (2008) Serotonin depletion effects on the pilocarpine model of epilepsy. Epilepsy Res 82:194–199

    Article  CAS  PubMed  Google Scholar 

  • Wada Y, Shiraishi J, Nakamura M, Koshino Y (1997) Role of serotonin receptor subtypes in the development of amygdaloid kindling in rats. Brain Res 747:338–342

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Minabe Y, Ashby CR Jr, Katsumori H (1998) Effects of acute administration of various 5-HT receptor agonists on focal hippocampal seizures in freely moving rats. Eur J Pharmacol 350:181–188

    Article  CAS  PubMed  Google Scholar 

  • Yan QS, Jobe PC, Dailey JW (1995) Further evidence of anticonvulsant role for 5-hydroxytryptamine in genetically epilepsy-prone rats. Br J Pharmacol 115:1314–1318

    CAS  PubMed  Google Scholar 

  • Yokoi I, Yamamoto M, Fujikawa N, Shirasu A, Mori A (1986) Determination of neurotransmitter release into the caudate nucleus during convulsions induced by pentylenetetrazole using in vivo differential pulse voltammetry. Brain Res 385:212–218

    Article  CAS  PubMed  Google Scholar 

  • Zeise ML, Batsche K, Wang RY (1994) The 5-HT3 receptor agonist 2-methyl-5-HT reduces postsynaptic potentials in rat CA1 pyramidal neurons of the hippocampus in vitro. Brain Res 651:337–341

    Article  CAS  PubMed  Google Scholar 

  • Zis AP, Nomikos GG, Brown EE, Damsma G, Fibiger HC (1992) Neurochemical effects of electrically and chemically induced seizures: an in vivo microdialysis study in the rat hippocampus. Neuropsychopharmacology 7:189–195

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by Grant No. N40102632/0640 from the Ministry of Science and Higher Education, Warsaw, Poland and by a statutory Grant No. 501-003-09049 from the Institute of Psychiatry and Neurology, Warsaw, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Szyndler.

Additional information

A. Bidziński: Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szyndler, J., Maciejak, P., Turzyńska, D. et al. Time course of changes in the concentrations of monoamines in the brain structures of pentylenetetrazole-kindled rats. J Neural Transm 117, 707–718 (2010). https://doi.org/10.1007/s00702-010-0414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0414-7

Keywords

Navigation