Skip to main content
Log in

Lamotrigine and valproic acid have different effects on motorcortical neuronal excitability

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

To investigate different cortical effects of lamotrigine and valproic acid, 30 paid healthy adult men were given, in a randomized/blinded fashion on three separate days (separated by a week), either a single dose of lamotrigine 325 mg, or a single dose of valproic acid 1,250 mg, or placebo. Resting motor threshold (RMT), cortical silent period (CSP) and motor evoked potential recruitment curves (RC) were assessed at baseline and 3 h after administration of each medication (or placebo). Lamotrigine caused a significant increase (63.32 vs. 69.25) in the RMT, compared with an insignificant increase following valproic acid (62.50 vs. 63.35), and a decrease (62.60 vs. 62.36) following placebo (F 2,26 = 18.58, P < 0.0001). No significant difference in CSP was found between placebo and drugs (F 2,26 = 0.119, P > 0.05). RCs were significantly suppressed by lamotrigine (t = 2.07, P < 0.05) and enhanced by valproic acid (t = 2.39, P < 0.05). Lamotrigine and valproic acid have different effects on cortical neuronal excitability as demonstrated by TMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Annett M (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321

    PubMed  CAS  Google Scholar 

  • Borckardt JJ, Nahas Z, Koola J, George MS (2006) Estimating resting motor thresholds in transcranial magnetic stimulation research and practice: a computer simulation evaluation of best methods. J Ect 22:169–175

    Article  PubMed  Google Scholar 

  • Boroojerdi B (2002) Pharmacologic influences on TMS effects. J Clin Neurophysiol 19:255–271

    Article  PubMed  Google Scholar 

  • Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG (2001) Mechanisms influencing stimulus-response properties of the human corticospinal system. Clin Neurophysiol 112:931–937

    Article  PubMed  CAS  Google Scholar 

  • Brouwer B, Ashby P (1990) Corticospinal projections to upper and lower limb spinal motoneurons in man. Electroencephalogr Clin Neurophysiol 76:509–519

    Article  PubMed  CAS  Google Scholar 

  • Brouwer B, Ashby P (1992) Corticospinal projections to lower limb motoneurons in man. Exp Brain Res 89:649–654

    Article  PubMed  CAS  Google Scholar 

  • Bryk AS, Raudenbush SW (1987) Application of hierarchical linear models to assessing change. Psychol Bull 101:147–158

    Article  Google Scholar 

  • Bryk AS, Raudenbush SW (1992) Hierachical linear models: applications and data analysis methods. Sage Publications, Newbury Park

    Google Scholar 

  • Cantello R, Civardi C, Varrasi C, Vicentini R, Cecchin M, Boccagni C, Monaco F (2006) Excitability of the human epileptic cortex after chronic valproate: a reappraisal. Brain Res 1099:160–166

    Article  PubMed  CAS  Google Scholar 

  • Devanne H, Lavoie BA, Capaday C (1997) Input–output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329–338

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, Rothwell JC (2000) Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 111:794–799

    Article  PubMed  CAS  Google Scholar 

  • First MB, Spitzer RL, Gibbon M, Williams JBW (1995) Structured clinical interview for DSM-IV I disorder. American Psychiatric Association, Washington

    Google Scholar 

  • Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81:257–262

    Article  PubMed  CAS  Google Scholar 

  • Garvey MA, Ziemann U, Becker DA, Barker CA, Bartko JJ (2001) New graphical method to measure silent periods evoked by transcranial magnetic stimulation. Clin Neurophysiol 112:1451–1460

    Article  PubMed  CAS  Google Scholar 

  • Gobbi G, Janiri L (2006) Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex. Psychopharmacology (Berl) 185:255–262

    Article  CAS  Google Scholar 

  • Hallett M (1995) Transcranial magnetic stimulation. Negative effects. Adv Neurol 67:107–113

    PubMed  CAS  Google Scholar 

  • Hattemer K, Knake S, Reis J, Oertel WH, Rosenow F, Hamer HM (2006) Cyclical excitability of the motor cortex in patients with catamenial epilepsy: a transcranial magnetic stimulation study. Seizure 15:653–657

    Article  PubMed  Google Scholar 

  • Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534

    PubMed  CAS  Google Scholar 

  • Inghilleri M, Berardelli A, Marchetti P, Manfredi M (1996) Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans. Exp Brain Res 109:467–472

    Article  PubMed  CAS  Google Scholar 

  • Johannessen CU (2000) Mechanisms of action of valproate: a commentatory. Neurochem Int 37:103–110

    Article  PubMed  CAS  Google Scholar 

  • Kazis DA, Kimiskidis VK, Papagiannopoulos S, Sotirakoglou K, Divanoglou D, Vlaikidis N, Mills KR, Kazis A (2006) The effect of valproate on silent period and corticomotor excitability. Epileptic Disord 8:136–142

    PubMed  Google Scholar 

  • Lee HW, Seo HJ, Cohen LG, Bagic A, Theodore WH (2005) Cortical excitability during prolonged antiepileptic drug treatment and drug withdrawal. Clin Neurophysiol 116:1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Li X, Teneback CC, Nahas Z, Kozel FA, Large C, Cohn J, Bohning DE, George MS (2004) Interleaved transcranial magnetic stimulation/functional MRI confirms that lamotrigine inhibits cortical excitability in healthy young men. Neuropsychopharmacology 29:1395–1407

    Article  PubMed  CAS  Google Scholar 

  • Loscher WN, Nordlund MM (2002) Central fatigue and motor cortical excitability during repeated shortening and lengthening actions. Muscle Nerve 25:864–872

    Article  PubMed  Google Scholar 

  • Manganotti P, Bongiovanni LG, Zanette G, Turazzini M, Fiaschi A (1999) Cortical excitability in patients after loading doses of lamotrigine: a study with magnetic brain stimulation. Epilepsia 40:316–321

    Article  PubMed  CAS  Google Scholar 

  • Mills KR, Kimiskidis V (1996) Motor cortex excitability during ballistic forearm and finger movements. Muscle Nerve 19:468–473

    Article  PubMed  CAS  Google Scholar 

  • Priori A, Berardelli A, Inghilleri M, Accornero N, Manfredi M (1994) Motor cortical inhibition and the dopaminergic system. Pharmacological changes in the silent period after transcranial brain stimulation in normal subjects, patients with Parkinson’s disease and drug-induced parkinsonism. Brain 117(Pt 2):317–323

    Article  PubMed  Google Scholar 

  • Reis J, John D, Heimeroth A, Mueller HH, Oertel WH, Arndt T, Rosenow F (2006) Modulation of human motor cortex excitability by single doses of amantadine. Neuropsychopharmacology 31:2758–2766

    Article  PubMed  CAS  Google Scholar 

  • Reutens DC, Puce A, Berkovic SF (1993) Cortical hyperexcitability in progressive myoclonus epilepsy: a study with transcranial magnetic stimulation. Neurology 43:186–192

    PubMed  CAS  Google Scholar 

  • Roberts DR, Ricci R, Funke FW, Ramsey P, Kelley W, Carroll JS, Ramsey D, Borckardt JJ, Johnson K, George MS (2007) Lower limb immobilization is associated with increased corticospinal excitability. Exp Brain Res 181:213–220

    Article  PubMed  Google Scholar 

  • Rothwell JC (1997) Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74:113–122

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Bonhage A, Knott H, Ferbert A (1996) Effects of carbamazepine on cortical excitatory and inhibitory phenomena: a study with paired transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 99:267–273

    Article  PubMed  CAS  Google Scholar 

  • Smith MJ, Adams LF, Schmidt PJ, Rubinow DR, Wassermann EM (2002) Effects of ovarian hormones on human cortical excitability. Ann Neurol 51:599–603

    Article  PubMed  CAS  Google Scholar 

  • Stefan H, Feuerstein TJ (2007) Novel anticonvulsant drugs. Pharmacol Ther 113:165–183

    Article  PubMed  CAS  Google Scholar 

  • Tassinari CA, Cincotta M, Zaccara G, Michelucci R (2003) Transcranial magnetic stimulation and epilepsy. Clin Neurophysiol 114:777–798

    Article  PubMed  Google Scholar 

  • Tergau F, Wischer S, Somal HS, Nitsche MA, Mercer AJ, Paulus W, Steinhoff BJ (2003) Relationship between lamotrigine oral dose, serum level and its inhibitory effect on CNS: insights from transcranial magnetic stimulation. Epilepsy Res 56:67–77

    Article  PubMed  CAS  Google Scholar 

  • Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517(Pt 2):591–597

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U (2004) TMS and drugs. Clin Neurophysiol 115:1717–1729

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Lonnecker S, Paulus W (1995) Inhibition of human motor cortex by ethanol. A transcranial magnetic stimulation study. Brain 118(Pt 6):1437–1446

    Article  PubMed  Google Scholar 

  • Ziemann U, Bruns D, Paulus W (1996a) Enhancement of human motor cortex inhibition by the dopamine receptor agonist pergolide: evidence from transcranial magnetic stimulation. Neurosci Lett 208:187–190

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996b) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996c) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–378

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1999) Motor excitability changes under antiepileptic drugs. Adv Neurol 81:291–298

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Jeffrey Borckardt for running HLM analysis. This study was funded primarily by an unrestricted research grant from GlaxoSmithKline to Dr George, as well as from Center for Advanced Imaging Research and Brain Stimulation Laboratory infrastructure and resources. CHL is a full-time employee of GlaxoSmithKline S.p.A. None of the other authors have equity or financial conflicts. Drs Li and George had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Presented in abstract form at the annual meeting of American College of Neuropsychopharmacology, Hollywood, FL, USA, December 14, 2006 and the annual meeting of the Society of Biological Psychiatry, San Diego, CA, USA, May 21, 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingbao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Ricci, R., Large, C.H. et al. Lamotrigine and valproic acid have different effects on motorcortical neuronal excitability. J Neural Transm 116, 423–429 (2009). https://doi.org/10.1007/s00702-009-0195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0195-z

Keywords

Navigation