Skip to main content
Log in

Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The cortical silent period evoked by magnetic transcranial stimulation and the peripheral silent period were studied in healthy subjects after intravenous injection of diazepam, baclofen or thiopental. None of the drugs tested changed the peripheral silent period. But, unexpectedly, diazepam significantly shortened the cortical silent period, the inhibitory effect lasting about 30 min. In experiments using paired transcranial stimuli, the conditioning shock inhibited the test response to a similar extent with and without diazepam. Although baclofen did not change the cortical silent period, it reduced the size of the H reflex in the forearm muscles. Thiopental also left the duration of the cortical silent period unchanged. These findings show that the cortical silent period can be modified pharmacologically. Diazepam possibly shortens the silent period by modulating GABA A receptors at a subcortical site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abadie P, Baron JC, Bisserbe JC, Boulenger JP, Rioux P, Travère JM, Barré L, Petit-Taboué MC, Zarifian E (1992) Central benzodiazepine receptors in human brain: estimation of regional B max and K D values with positron emission tomography. Eur J Pharmacol 213:107–115

    Google Scholar 

  • Berardelli A, Rona S, Inghilleri M, Manfredi M (1996) Cortical inhibition in Parkinson's disease: a study with paired magnetic stimulation. Brain, in press

  • Bowery NG, Hudson AL, Price GW (1987) GABA A and GABA B receptor site distribution in the rat central nervous system. Neuroscience 20:365–383

    Google Scholar 

  • Cantello R, Giannelli M, Bettucci D, Civardi C, De Angelis MS, Mutani R (1991) Parkinson's disease rigidity: magnetic motor evoked potentials in a small hand muscle. Neurology 41:1449–1456

    Google Scholar 

  • Cedarbaum JM, Schleifer LS (1990) Drugs for Parkinson's disease: spasticity and acute muscle spasm. In: Goodman Gilman A, Rall TW, Nies AS, Taylor P (eds) The pharmacological basis of therapeutics Pergamon Press, New York, pp 463–484

    Google Scholar 

  • Creutzfeldt O, Baumgartner G, Schoen L (1956) Reaktionen einzelner Neurone des senso-motorischen Cortex nach elektrischen Reizen. I. Hemmung und Erregung nach direkten und kontralateralen Reizen. Arch Psychiatr Z Neurol 194:597–619

    Google Scholar 

  • Crunelli V, Leresche N (1991) A role for GABA B receptors in excitation and inhibition of thalamocortical cells. Trends in Neurosci 14:16–21

    Google Scholar 

  • Curtis DS, Malik R (1985) The differential effects of baclofen on segmental and descending excitation of spinal interneurons in the cat. Exp Brain Res 58:333–337

    Google Scholar 

  • Davidoff R (1985) Antispasticity drugs: mechanisms of action. Ann Neurol 17:107–116

    Google Scholar 

  • De Long M (1990) Primate models of movement disorders of basal ganglia origin. Trends in Neurosci 13:281–285

    Google Scholar 

  • Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81:257–262

    Article  CAS  PubMed  Google Scholar 

  • Giesen HJ von, Roick H, Benecke R (1994) Inhibitory actions of motor cortex following unilateral brain lesions as studied by magnetic brain stimulation. Exp Brain Res 99:84–96

    Google Scholar 

  • Haefely W (1989) Antagonists of benzodiazepines: functional aspects. In: Biggio G, Costa E (eds) Benzodiazepine recognition site ligands: biochemistry and pharmacology. Raven Press, New York, pp 73–93

    Google Scholar 

  • Haghighi SS, Green KD, Oro JJ, Kracke GR (1990) Depressive effect of isoflurane anesthesia on motor evoked potentials. Neurosurgery 26:993–997

    Google Scholar 

  • Haug BA, Schonle PW, Knobloch C, Kohne M (1992) Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 85:158–160

    Google Scholar 

  • Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol (Lond) 466:521–534

    Google Scholar 

  • Keller A, White EL (1986) Distribution of glutamic acid decarboxylase-immunoreactive structures in the barrel region of mouse somatosensory cortex. Neurosci Lett 66:245–250

    Google Scholar 

  • Krnjecvic K (1974) Chemical nature of synaptic transmission in vertebrates. Physiol Rev 54:418–540

    Google Scholar 

  • Krnievic K (1987) GABAergic inhibition in the neocortex. J Neurol Sci 8:537–547

    Google Scholar 

  • Kujirai T, Caramia D, Rothwell JC, Day BL, Thompson PD, Ferbert A, Marsden CD (1993) Corticocortical inhibition in the human motor cortex. J Physiol (Lond) 471:501–519

    Google Scholar 

  • Lee SM, Friedberg MH, Ebner FF (1994) The role of GABA-mediated inhibition in the rat ventral posterior medial thalamus: assessment of receptive field changes following thalamic reticular nucleus lesions. J Neurophysiol 71:1702–1715

    Google Scholar 

  • Marsden CD, Merton PA, Morton HB (1983) Direct electrical stimulation of corticospinal pathways throughout the intact scalp in human subjects. Adv Neurol 39:387–391

    Google Scholar 

  • McCormick DA (1989) GABA as an inhibitor neurotransmitter in human cerebral cortex. J Neurophysiol 62:1018–1027

    Google Scholar 

  • Merton PA (1951) The silent period in a muscle of the human hand. J Physiol (Lond) 114:183–198

    Google Scholar 

  • Prichard JW, Bruce RR (1989) Phenobarbital: mechanism of action. In: Levt R, Mattson R, Meldrum B, Penry JK, Dreifuss FE (eds) Antiepileptic drugs. Raven Press, New York, pp 267–282

    Google Scholar 

  • Priori A, Berardelli A, Inghilleri M, Accornero N, Manfredi M (1994a) Motor cortical inhibition and the dopaminergic system. Brain 117:317–323

    Google Scholar 

  • Priori A, Berardelli A, Inghilleri M, Polidori L, Manfredi M (1994b) Electromyographic silent period after transcranial brain stimulation in Huntington's disease. Mov Disord 9:178–182

    Google Scholar 

  • Rall TW (1990) Hypnotics and sedatives. In: Goodman Gilman A, Rall TW, Nies AS, Taylor P (eds) The pharmacological basis of therapeutics. Pergamon Press, New York, pp 345–382

    Google Scholar 

  • Ren JQ, Aika Y, Heizmann CW, Kosaka T (1992) Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and paralbumin-containing neurons. Exp Brain Res 92:1–14

    Google Scholar 

  • Roick A, Giesen HJ von, Lange HW, Benecke R (1992) Postexcitatory inhibition in Huntington's disease. Mov Disord [Suppl 1] 7:27

    Google Scholar 

  • Roick H, Giesen HJ von, Benecke R (1993) On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects. Exp Brain Res 94:489–498

    Google Scholar 

  • Schmid UD, Boll J, Liechti S, Schmid J, Hess CW (1992) Influence of some anesthetic agents on muscle responses to transcranial magnetic cortex stimulation: a pilot study in humans. Neurosurgery 30:85–92

    Google Scholar 

  • Schonle PW, Isenberg C, Crozier TA, Dressler D, Machetanz J, Conrad B (1989) Changes of transcranially evoded motor responses in man by midazolam, a short acting benzodiazepine. Neurosci Lett 101:321–324

    Google Scholar 

  • Shahani BT, Young RR (1973) Studies of the normal human silent period. In: Desmedt JE (ed) New developed EMG clinical neurophysiology. Karger, Basel, pp 589–602

    Google Scholar 

  • Siavash SH, Douglas Green BS, Oro JJ, Drake RK, Kracke GR (1990) Depressive effect of isoflurane anesthesia on motor evoked potentials. Neurosurgery 26:993–997

    Google Scholar 

  • Twyman RE, Rogers CJ, Macdonald RL (1989) Differential regulation of γ-aminobutyric acid receptor channels by diazepam and phenobarbital. Ann Neurol 25:213–220

    Google Scholar 

  • Uozumi T, Ito Y, Tsuji S, Murai Y (1992) Inhibitory period following motor potentials evoked by magnetic cortical stimulation. Electroencephalogr Clin Neurophysiol 85:273–279

    Google Scholar 

  • Valls-Solè J, Pascual-Leone A, Brasil-Neto JP, Cammarota A, McShane L, Hallett M (1994) Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson's disease. Neurology 44:735–741

    Google Scholar 

  • Wilson SA, Lockwood RJ, Thickbroom GW, Mastaglia FL (1993) The muscle silent period following transcranial magnetic cortical stimulation. J Neurol Sci 114:216–222

    Google Scholar 

  • Zhang H, Howard C, Rosenberg HC, Tietzel EI (1989) Injection of benzodiazepines but not GABA or muscimol into pars reticulata of substantia nigra suppresses pentylenetetrazol seizures. Brain Res 488:73–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inghilleri, M., Berardelli, A., Marchetti, P. et al. Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans. Exp Brain Res 109, 467–472 (1996). https://doi.org/10.1007/BF00229631

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229631

Key words

Navigation