Skip to main content

Advertisement

Log in

A 1H magnetic resonance spectroscopy study in adults with obsessive compulsive disorder: relationship between metabolite concentrations and symptom severity

  • Biological Psychiatry - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

1H magnetic resonance spectroscopy (1H MRS) studies exploring brain metabolites, especially glutamine + glutamate (Glx), in obsessive compulsive disorder (OCD) are of vital interest for trying to understand more about the pathophysiology of OCD. Therefore, we conducted the present 1H MRS study with the aims of (1) comparing MRS metabolites in a group of adult patients with OCD and a group of healthy controls, and (2) examining the relationship between MRS metabolite concentrations and symptom severity in the patient group. Three brain regions were studied, the right caudate nucleus, the anterior gyrus cinguli and the occipital cortex bilaterally. Since multivariate analysis is a highly useful tool for extraction of 1H MRS data, we applied principal component analysis (PCA) and partial least square projection to latent structures (PLS) to the MRS data. PLS disclosed a strong relationship between several of the metabolites and OCD symptom severity, as measured with Yale-Brown obsessive-compulsive scale (YBOCS): the YBOCS score was found to be positively correlated to caudate creatine, Glx, glutamate, and choline compounds as well as occipital cortex myoinositol, and negatively correlated to occipital cortex Glx. The negative correlation between occipital cortex Glx and YBOCS was the most impressive. PCA did not reveal any tendency for a separation between the patients with OCD and controls with respect to MRS metabolites. The results are discussed in relation to corticostriatothalamocortical feedback and previous observations of poor visuospatial ability in OCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BDI:

Beck depression inventory

CHESS:

Chemical shift selective saturation

Cho:

Choline compounds

Cr:

Creatine + phosphocreatine

CYBOCS:

Children’s Yale-Brown obsessive-compulsive scale

Gln:

Glutamine

Glu:

Glutamate

Glx:

Glutamine + glutamate

icu:

institutional concentration units

mI:

Myoinositol

MR:

Magnetic resonance

MRS:

Magnetic resonance spectroscopy

NAA:

N-Acetylaspartate

NAAG:

N-Acetylaspartylglutamate

NMR:

Nuclear magnetic resonance

OCD:

Obsessive compulsive disorder

PET:

Positron emission tomography

PLS:

Projection to latent structures by means of partial least squares

ppm:

parts per million

PRESS:

Point resolved spectroscopy

SNR:

Signal-to-noise ratio

SPECT:

Single photon emission computed tomography

SSRI:

Selective serotonin reuptake inhibitor

TE:

Echo time

TR:

Repetition time

VOI:

Volume-of-interest

YBOCS:

Yale-Brown obsessive-compulsive scale

References

  • Baxter LR (1992) Neuroimaging studies of obsessive compulsive disorder. Psychiatr Clin North Am 15(4):871–884

    PubMed  Google Scholar 

  • Baxter LR, Schwartz JM, Bergman KS, Szuba MP, Guze BH, Mazziotta JC et al (1992) Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. Arch Gen Psychiatry 49(9):681–689

    PubMed  CAS  Google Scholar 

  • Benkelfat C, Nordahl TE, Semple WE, King AC, Murphy DL, Cohen RM (1990) Local cerebral glucose metabolic rates in obsessive-compulsive disorder. Patients treated with clomipramine. Arch Gen Psychiatry 47:840–848

    PubMed  CAS  Google Scholar 

  • Boldrini M, Del Pace L, Placidi GP, Keilp J, Ellis SP, Signori S et al (2005) Selective cognitive deficits in obsessive-compulsive disorder compared to panic disorder with agoraphobia. Acta Psychiatr Scand 111:150–158

    Article  PubMed  CAS  Google Scholar 

  • Breiter HC, Rauch SL, Kwong KK, Baker JR, Weisskoff RM, Kennedy DN et al (1996) Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Arch Gen Psychiatry 53:595–606

    PubMed  CAS  Google Scholar 

  • Boddaert N, Mochel F, Meresse I, Seidenwurm D, Cachia A, Brunelle F et al (2006) Parieto-occipital grey matter abnormalities in children with Williams syndrome. Neuroimage 30:721–725

    Article  PubMed  CAS  Google Scholar 

  • Burlina AP, Aureli T, Bracco F, Conti F, Battistin L (2000) MR spectroscopy: a powerful tool for investigating brain function and neurological diseases. Neurochem Res 25:1365–1372

    Article  PubMed  CAS  Google Scholar 

  • Carlsson ML (2001) On the role of prefrontal cortex glutamate for the antithetical phenomenology of obsessive compulsive disorder and attention deficit hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry 25:5–26

    Article  PubMed  CAS  Google Scholar 

  • Chiocca EA, Martuza RL (1990) Neurosurgical therapy of obsessive-compulsive disorder. In: Jenike MA et al (Eds) Obsessive-compulsive disorder: theory and management, 2nd edn. Yearbook Medical, Chicago, pp 283–294

    Google Scholar 

  • Ciesielski KT, Hämäläinen MS, Lesnik PG, Geller DA, Ahlfors SP (2005) Increased MEG activation in OCD reflects a compensatory mechanism specific to the phase of a visual working memory task. Neuroimage 24:1180–1191

    Article  PubMed  Google Scholar 

  • Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL, Heninger GR, Charney (1989) The yale-brown obsessive compulsive scale I development, use, and reliability. Arch Gen Psychiatry 46:1006–1011

    PubMed  CAS  Google Scholar 

  • Hansen ES, Hasselbalch S, Law I, Bolwig TG (2002) The caudate nucleus in obsessive-compulsive disorder. Reduced metabolism following treatment with paroxetine: a PET study. Int J Neuropsychopharmacol 5:1–10

    Article  PubMed  CAS  Google Scholar 

  • Hansson LO, Waters N, Winblad B, Gottfries C-G, Carlsson A (1994) Evidence for biochemical heterogeneity in schizophrenia: a multivariate study of monoaminergic indices in human post-mortal brain tissue. J Neural Transm 98:217–235

    Article  CAS  Google Scholar 

  • Hansson LO, Waters N, Holm S, Sonesson C (1995) On the quantitative structure-activity relationships of meta-substituted (S)-phenylpiperidines, a class of preferential dopamine D2 autoreceptor ligands: modeling of dopamine synthesis and release in vivo by means of partial least squares regression. J Med Chem 38:3121–3131

    Article  PubMed  CAS  Google Scholar 

  • Hay P, Sachdev P, Gumming S, Smith JS, Lee T, Kitchener P, Matheson J (1993) Treatment of obsessive-compulsive disorder by psychosurgery. Acta Psychiatr Scand 87:197–207

    Article  PubMed  CAS  Google Scholar 

  • Hazrati LN, Parent A (1991) Projection from the external pallidum to the reticular thalamic nucleus in the squirrel monkey. Brain Res 550:142–146

    Article  PubMed  CAS  Google Scholar 

  • Irle E, Exner C, Thielen K, Weniger G, Ruther E (1998) Obsessive compulsive disorder and ventromedial frontal lesions: Clinical and neuropsychological findings. Am J Psychiatry 155:255–263

    PubMed  CAS  Google Scholar 

  • Jackson JE (1991) A user’s guide to principal components. Wiley, London

    Google Scholar 

  • Kim H, McGrath BM, Silverstone PH (2005) A review of the possible relevance of inositol and the phosphatidylinositol second messenger system (PI-cycle) to psychiatric disorders—focus on magnetic resonance spectroscopy (MRS) studies. Hum Psychopharmacol 20:309–326

    Article  PubMed  CAS  Google Scholar 

  • Kwon JS, Kim JJ, Lee DW, Lee JS, Lee DS, Kim MS et al (2003) Neural correlates of clinical symptoms and cognitive dysfunctions in obsessive-compulsive disorder. Psychiatry Res 122:37–47

    Article  PubMed  Google Scholar 

  • Lacerda AL, Dalgalarrondo P, Caetano D, Haas GL, Camargo EE, Keshavan MS (2003) Neuropsychological performance and regional cerebral blood flow in obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 27:657–665

    Article  PubMed  Google Scholar 

  • Nordahl TE, Benkelfat C, Semple WE, Gross M, King AC, Cohen RM (1989) Cerebral glucose metabolic rates in obsessive compulsive disorder. Neuropsychopharmacology 2:23–28

    Article  PubMed  CAS  Google Scholar 

  • Pinault D (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res Rev 46(1):1–31

    Article  PubMed  Google Scholar 

  • Pfund Z, Chugani DC, Juhász C, Muzik O, Chugani HT, Wilds IB, Seraji-Bozorgzad N, Moore GJ (2000) Evidence for coupling between glucose metabolism and glutamate cycling using FDG PET and 1H magnetic resonance spectroscopy in patients with epilepsy. J Cereb Blood Flow Metab 20:871–878

    Article  PubMed  CAS  Google Scholar 

  • Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  PubMed  CAS  Google Scholar 

  • Reiss AL, Eckert MA, Rose FE, Karchemskiy A, Kesler S, Chang M et al (2004) An experiment of nature: brain anatomy parallels cognition and behavior in Williams syndrome. J Neurosci 24:5009–5015

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg DR, MacMaster FP, Keshavan MS, Fitzgerald KD, Stewart CM, Moore (2000) Decrease in caudate glutamatergic concentrations in pediatric obsessive-compulsive disorder patients taking paroxetine. J Am Acad Child Adolesc Psychiatry 39:1096–1103

    Article  PubMed  CAS  Google Scholar 

  • Rothman DL, Behar KL, Hyder F, Shulman RG (2003) In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev Physiol 65:401–427

    Article  PubMed  CAS  Google Scholar 

  • Rubin RT, Villanueva-Meyer J, Ananth J, Trajmar PG, Mena I (1992) Regional xenon 133 cerebral blood flow and cerebral technetium 99m HMPAO uptake in unmedicated patients with obsessive-compulsive disorder and matched normal control subjects. Determination by high-resolution single-photon emission computed tomography. Arch Gen Psychiatry 49:695–702

    PubMed  CAS  Google Scholar 

  • Rubin RT, Ananth J, Villanueva-Meyer J, Trajmar PG, Mena I (1995) Regional 133xenon cerebral blood flow and cerebral 99mTc-HMPAO uptake in patients with obsessive-compulsive disorder before and during treatment. Biol Psychiatry 38:429–437

    Article  PubMed  CAS  Google Scholar 

  • Saxena S, Brody AL, Schwartz JM, Baxter LR (1998) Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br J Psychiatry Suppl 35:26–37

    PubMed  Google Scholar 

  • Sjöström M, Wold S, Söderström B (1986) PLS discriminant plots. In: Gelsema ES, Kanal LN (eds) Pattern recognition in practice II. Elsevier, North-Holland, Amsterdam, pp 461–470

    Google Scholar 

  • Stahl SM (1988) Basal ganglia neuropharmacology and Obsessive-Compulsive disorder: the obsessive-compulsive disorder hypothesis of basal ganglia dysfunction. Psychopharmacol Bull 24:370–374

    PubMed  CAS  Google Scholar 

  • Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc B36:111–147

    Google Scholar 

  • Ståhle L, Ungerstedt U (1986) Different behavioural pattern induced by the dopamine agonist apomorphine analyzed by multivariate statistics. Pharmacol Biochem Behav 24:291–298

    Article  PubMed  Google Scholar 

  • Ståhle L, Ungerstedt U (1987) On the mode of action of six putative dopamine receptor agonists on suppression of exploratory behaviour in the rat. Psychopharmacology 91:139–146

    Article  PubMed  Google Scholar 

  • Swedo SE, Schapiro MB, Grady CL, Cheslow DL, Leonard HL, Kumar A et al (1989) Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Arch Gen Psychiatry 46:518–523

    PubMed  CAS  Google Scholar 

  • Szeszko PR, Ardekani BA, Ashtari M, Malhotra AK, Robinson DG, Bilder RM, Lim KO (2005) White matter abnormalities in obsessive-compulsive disorder: a diffusion tensor imaging study. Arch Gen Psychiatry 62:782–790

    Article  PubMed  Google Scholar 

  • Whiteside SP, Port JD, Abramowitz JS (2004) A meta-analysis of functional neuroimaging in obsessive-compulsive disorder. Psychiatry Res 132:69–79

    Article  PubMed  Google Scholar 

  • Whiteside SP, Port JD, Deacon BJ, Abramowitz JS (2006) A magnetic resonance spectroscopy investigation of obsessive-compulsive disorder and anxiety. Psychiatry Res 31(146):137–147

    Google Scholar 

  • Wold S (1978) Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 20:397–405

    Article  Google Scholar 

  • Wold S, Albano C, Dunn WJ, Edlund U, Esbensen K, Geladi P, Hellberg S, Johansson E, Lindberg W, Sjöström M (1984) Multivariate data analysis in chemistry. In: Kowalski BR (ed) Chemometrics: mathematics and statistics in chemistry. D Reidel, Dordrecht

    Google Scholar 

  • Wold S, Sjöström M, Eriksson L (1999) Partial least squares projections to latent structures (PLS) in chemistry. In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF, Schreiner PR (eds) The encyclopedia of computational chemistry. Wiley, Chichester, pp 2006–2020

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Swedish Research Council (14039), Västra Götalandsregionen, Sweden, grants from the state under the LUA/ALF agreement, Frimurare Barnhusdirektionen Göteborg, The Arvid Carlsson Foundation, Fredrik och Ingrid Thurings stiftelse, The Foundations of the National Board of Health and Welfare, The Royal Society of Arts and Science in Göteborg, Adlerbertska forskningsstiftelsen and Wilhelm och Martina Lundgrens vetenskapsfond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria L. Carlsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starck, G., Ljungberg, M., Nilsson, M. et al. A 1H magnetic resonance spectroscopy study in adults with obsessive compulsive disorder: relationship between metabolite concentrations and symptom severity. J Neural Transm 115, 1051–1062 (2008). https://doi.org/10.1007/s00702-008-0045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0045-4

Keywords

Navigation