Skip to main content
Log in

Neurotrophin and neuropeptide expression in mouse brain is regulated by knockout of the norepinephrine transporter

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Neurotrophins [e.g. nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] and neuropeptides such as corticotropin-releasing factor (CRF) are reported to contribute to the action of antidepressants (ADs). Norepinephrine transporter (NET) knockout (NETKO) mice represent a model of chronic AD treatment. In the present study, we examined brain-region-specific regulations of NT-3, NGF, BDNF and CRF at the mRNA and protein level in NET wild-type (NETWT) and NETKO mice by means of quantitative real-time PCR (qPCR) and two-site enzyme-linked immunosorbent assays (ELISAs), respectively. NETKO-induced changes were detected for NT-3 in olfactory bulb, brainstem and whole brain at the mRNA and for olfactory bulb at the protein level, for NGF mRNA and protein in olfactory bulb, cerebellum and brainstem and for CRF mRNA and protein in the hippocampus. In contrast, BDNF levels remained unaltered. Our results suggest that NETKO mice represent a useful model to examine gene regulation of downstream targets potentially involved in the action of ADs. We could delineate NT-3, NGF and CRF as being regulated in distinct brain regions by KO of the NET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alfonso J, Pollewick GD, van der Hart MG, Flügge G, Fuchs E, Frasch AC (2004) Identification of genes regulated by chronic psychosocial stress and antidepressant treatment in the hippocampus. Eur J Neurosci 19:659–666

    Article  PubMed  Google Scholar 

  • Altar CA (1999) Neurotrophins and depression. Trends Pharmacol Sci 20:59–61

    Article  PubMed  CAS  Google Scholar 

  • Altar CA, Whitehead RE, Chen R, Wortwein G, Madsen TM (2003) Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain. Biol Psychiatry 54:703–709

    Article  PubMed  CAS  Google Scholar 

  • Arenas E, Persson H (1994) Neurotrophin-3 prevents the death of adult central noradrenergic neurons in vivo. Nature 367:368–371

    Article  PubMed  CAS  Google Scholar 

  • Arzt E, Holsboer F (2006) CRF signalling: molecular specificity for drug targeting in the CNS. Trends Pharmacol Sci 27:531–538

    Article  PubMed  CAS  Google Scholar 

  • Bale TL (2006) Stress sensitivity and the development of affective disorders. Horm Behav 50:529–533

    Article  PubMed  CAS  Google Scholar 

  • Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137–151

    Article  PubMed  CAS  Google Scholar 

  • Bissette G, Klimek V, Pan J, Stockmeier C, Ordway G (2003) Elevated concentrations of CRF in the locus coeruleus of depressed subjects. Neuropsychopharmacology 28:1328–1335

    Article  PubMed  CAS  Google Scholar 

  • Bönisch H and Brüss M (2006) The norepinephrine transporter in physiology and disease. In: Sitte HH, Freissmuth M (eds) Neurotransmitter transporters, Handbook of experimental pharmacology, vol 175. Springer, Heidelberg, pp 485–524

  • Castren E (2004) Neurotrophic effects of antidepressant drugs. Curr Opin Pharmacol 4:58–64

    Article  PubMed  CAS  Google Scholar 

  • Castren E (2005) Is mood chemistry? Nat Rev Neurosci 6:241–246

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Bender RA, Frotscher M, Baram TZ (2001) Novel and transient populations of corticotropin-releasing hormone-expressing neurons in developing hippocampus suggest unique functional roles: a quantitative spatiotemporal analysis. J Neurosci 21:7171–7181

    PubMed  CAS  Google Scholar 

  • Chen Y, Brunson KL, Adelmann G, Bender RA, Frotscher M, Baram TZ (2004) Hippocampal corticotropin releasing hormone: pre- and postsynaptic location and release by stress. Neuroscience 126:533–540

    Article  PubMed  CAS  Google Scholar 

  • Coppell AL, Pei QA, Zetterström TSC (2003) Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology 44:903–910

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Holmes A (2005) The ascent of mouse: advantages in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790

    Article  PubMed  CAS  Google Scholar 

  • Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, Bartolomucci A, Fuchs E (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci 98:12796–12801

    Article  PubMed  CAS  Google Scholar 

  • de Bellis MD, Gold PW, Geracioti Jr TD, Listwak SJ, Kling MA (1993) Association of fluoxetine treatment with reductions in CSF concentrations of corticotropin-releasing hormone and arginine vasopressin in patients with major depression. Am J Psychiatry 150:656–657

    PubMed  Google Scholar 

  • de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475

    Article  PubMed  CAS  Google Scholar 

  • Duman RS (2004) Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 5:11–25

    Article  PubMed  CAS  Google Scholar 

  • Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    PubMed  CAS  Google Scholar 

  • Dziedzicka-Wasylewska M, Faron-Gorecka A, Kusmider M, Drozdowska E, Rogoz Z, Siwanowicz J, Caron MG, Bönisch H (2006) Effect of antidepressant drugs in mice lacking the norepinephrine transporter. Neuropsychopharmacology 31:2424–2432

    Article  PubMed  CAS  Google Scholar 

  • Eisch AJ, Bolanos CA, de Witt J, Simonak RD, Pudiak CM, Barrot M, Verhaagen J, Nestler EJ (2003) Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry 54:994–1005

    Article  PubMed  CAS  Google Scholar 

  • Foreman PJ, Taglialatela G, Angelucci L, Turner PC, Perez-Polo JR (1993) Nerve growth factor and p75 NGFR factor mRNA change in rodent CNS following stress activation of the hypothalamo-pituitary-adrenocortical axis. J Neurosci 36:10–18

    Article  CAS  Google Scholar 

  • Gilsbach R, Faron-Gorecka A, Rogoz Z, Brüss M, Caron MG, Dziedzicka-Wasylewska M, Bönisch H (2006a) Norepinephrine transporter knockout-induced up-regulation of brain alpha2A/C-adrenergic receptors. J Neurochem 96:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Gilsbach R, Kouta M, Bönisch H, Brüss M (2006b) Comparison of in vitro and in vivo reference genes for internal standardization of real-time PCR data. Biotechniques 40:173–177

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Shimizu E, Iyo M (2004) Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res Brain Res Rev 45:104–114

    Article  PubMed  CAS  Google Scholar 

  • Hellweg R, Lang UE, Nagel M, Baumgartner A (2002) Subchronic treatment with lithium increases nerve growth factor content in distinct brain regions of adult rats. Mol Psychiatry 7:604–608

    Article  PubMed  CAS  Google Scholar 

  • Hellweg R Zueger M, Fink K, Hörtnagl H, Gass P (2007) Olfactory bulbectomy in mice leads to increased BDNF levels and decreased serotonin turnover in depression-related brain areas. Neurobiol Dis 25:1–7

    Article  CAS  Google Scholar 

  • Hock C, Heese K, Müller-Spahn F, Huber P, Riesen W, Nitsch RM, Otten U (2000) Increased cerebrospinal fluid levels of neurotrophin 3 (NT-3) in elderly patients with major depression. Mol Psychiatry 5:510–513

    Article  PubMed  CAS  Google Scholar 

  • Hofer M, Pagliusi SR, Hohn A, Leibrock J, Barde YA (1990) Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J 9:2459–2464

    PubMed  CAS  Google Scholar 

  • Holsboer F (2003) Corticotropin-releasing hormone modulators and depression. Curr Opin Investig Drugs 4:46–50

    PubMed  CAS  Google Scholar 

  • Ising M, Zimmermann US, Künzel HE, Uhr M, Foster AC, Learned-Coughlin SM, Holsboer F, Grigoriadis DE (2007) High-affinity CRF1 receptor antagonist NBI-34041: Preclinical and clinical data support safety and efficacy in attenuating elevated stress response. Neuropsychopharmacology 32:1941–1949

    Article  PubMed  CAS  Google Scholar 

  • Ivy AS, Rodriguez FG, Garcia C, Chen MJ, Russo-Neustadt AA (2003) Noradrenergic and serotoninergic blockade inhibits BDNF mRNA activation following exercise and antidepressants. Pharmacol Biochem Behav 75:81–88

    Article  PubMed  CAS  Google Scholar 

  • Katoh-Semba R, Takeuchi IK, Semba R, Kato K (1997) Distribution of brain-derived neurotrophic factor in rats and its changes with the development in the brain. J Neurochem 69:34–42

    Article  PubMed  CAS  Google Scholar 

  • Keck ME, Ohl F, Holsboer F, Müller M (2005) Listening to mutant mice: a spotlight on the role of CRF/CRF receptor systems in affective disorders. Neurosci Biobehav Rev 29:867–889

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Park SH, Choi SH, Moon BH, Lee KJ, Kang SW, Lee MS, Choi SH, Chun BG, Shin KH (2006) Effects of repeated tianeptine treatment on CRF mRNA expression in non-stressed and chronic mild stress-exposed rats. Neuropharmacology 50:824–833

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R, Skaper SD, Toso RD, Petrelli L, Leon A (1996) Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci 19:514–520

    Article  PubMed  CAS  Google Scholar 

  • Lorang D, Amara SG, Simerly RB (1994) Cell-type-specific expression of catecholamine transporters in the rat brain. J Neurosci 14:4903–4914

    PubMed  CAS  Google Scholar 

  • Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, Furth ME, Lindsay RM, Yancopoulos GD (1990) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5:501–509

    Article  PubMed  CAS  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    PubMed  CAS  Google Scholar 

  • Malberg JE, Blendy JA (2005) Antidepressant action: to the nucleus and beyond. Trends Pharmacol Sci 26:631–638

    Article  PubMed  CAS  Google Scholar 

  • Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff K, Gray NA, Zarate CA, Charney DS (2003) Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 53:707–742

    Article  PubMed  CAS  Google Scholar 

  • Nakane T, Audhya T, Hollander CS, Schlesinger DH, Kardos P, Brown C, Passarelli J (1986) Corticotrophin-releasing factor in extra-hypothalamic brain of the mouse: demonstration by immunoassay and immunoneutralization of bioassayable activity. J Endocrinol 111:143–149

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch A, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25

    Article  PubMed  CAS  Google Scholar 

  • Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547

    PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Post RM (2007) Role of BDNF in bipolar and unipolar disorder: clinical and theoretical implications. J Psychiatr Res 41:979–990

    Article  PubMed  Google Scholar 

  • Reul JM, Holsboer F (2002) Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2:23–33

    Article  PubMed  CAS  Google Scholar 

  • Risbrough VB, Stein MB (2006) Role of corticotropin releasing factor in anxiety disorders: a translational research perspective. Horm Behav 50:550–561

    Article  PubMed  CAS  Google Scholar 

  • Russo-Neustadt AA, Alejandre H, Garcia C, Ivy AS, Chen MJ (2004) Hippocampal brain-derived neurotrophic factor expression following treatment with reboxetine, citalopram, and physical exercise. Neuropsychopharmacology 29:2189–2199

    Article  PubMed  CAS  Google Scholar 

  • Rylett RJ, Williams LR (1994) Role of neurotrophins in cholinergic-neuron function in the adult and aged CNS. Trends Neurosci 17:486–490

    Article  PubMed  CAS  Google Scholar 

  • Scaccianoce S, Lombardo K, Angelucci L (2000) Nerve growth factor brain concentration and stress changes depend on type of stressor and age. Int J Dev Neurosci 18:469–479

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Herbrüggen O, Chourbaji S, Müller H, Danker-Hopfe H, Brandwein C, Gass P, Hellweg R (2006) Differential regulation of nerve growth factor and brain-derived neurotrophic factor in a mouse model of learned helplessness. Exp Neurol 202:404–409

    Article  PubMed  CAS  Google Scholar 

  • Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioural models of depression. J Neurosci 22:3251–3261

    PubMed  CAS  Google Scholar 

  • Smith MA, Makino S, Altemus M, Michelson D, Hong SK, Kvetnansky R, Post RM (1995) Stress and antidepressants differentially regulate neurotrophin 3 mRNA expression in the locus coeruleus. Proc Natl Acad Sci 92:8788–8792

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Aloe L, Alleva E, De Simone R, Goedert M, Levi-Montalcini R (1989) Nerve growth factor mRNA and protein increase in hypothalamus in a mouse model of aggression. Proc Natl Acad Sci 86:8555–8559

    Article  PubMed  CAS  Google Scholar 

  • Stout SC, Owens MJ, Nemeroff CB (2002) Regulation of corticotropin-releasing factor neuronal systems and hypothalamic-pituitary-adrenal axis activity by stress and chronic antidepressant treatment. J Pharmacol Exp Ther 300:1085–1092

    Article  PubMed  CAS  Google Scholar 

  • von Richthofen S, Lang UE, Hellweg R (2003) Effects of different kinds of acute stress on nerve growth factor content in rat brain. Brain Res 987:207–213

    Article  CAS  Google Scholar 

  • Wang YM, Xu F, Gainetdinov RR, Caron MG (1999) Genetic approaches to studying norepinephrine function: knockout of the mouse norepinephrine transporter gene. Biol Psychiatry 46:1124–1130

    Article  PubMed  CAS  Google Scholar 

  • Whittemore SR, Ebendal T, Lärkfors L, Olson L, Seiger A, Strömberg I, Persson H (1986) Developmental and regional expression of ß nerve growth factor messenger RNA and protein in the rat central nervous system. Proc Natl Acad Sci 83:817–821

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1990) Animal models of depression: an overview. Pharmacol Ther 45:425–455

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, Miller GW, Wang YM, Caron MG (2000) Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci 3:465–471

    Article  PubMed  CAS  Google Scholar 

  • Zhang JM, Dix J, Langtimm-Sedlack CJ, Trusk T, Schroeder B, Hoffmann R, Strosberg AD, Winslow JW, Sieber-Blum M (1997) Neurotrophin-3- and norepinephrine-mediated adrenergic differentiation and the inhibitory action of desipramine and cocaine. J Neurobiol 32:262–280

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of BONFOR; B. Haenisch is receiving a scholarship from the Studienstiftung des Deutschen Volkes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bönisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haenisch, B., Gilsbach, R. & Bönisch, H. Neurotrophin and neuropeptide expression in mouse brain is regulated by knockout of the norepinephrine transporter. J Neural Transm 115, 973–982 (2008). https://doi.org/10.1007/s00702-008-0039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0039-2

Keywords

Navigation