Skip to main content

Advertisement

Log in

Changes of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in the model of experimental acute hydrocephalus in rabbits

  • Experimental Research - Pediatrics
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

To study the integrity of white matter, we investigated the correlation between the changes in neuroradiological and morphological parameters in an animal model of acute obstructive hydrocephalus.

Methods

Hydrocephalus was induced in New Zealand rabbits (n = 10) by stereotactic injection of kaolin into the lateral ventricles. Control animals received saline in place of kaolin (n = 10). The progression of hydrocephalus was assessed using magnetic resonance imaging. Regional fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) were measured in several white matter regions before and after the infusion of kaolin. Morphology of myelinated nerve fibers as well as of the blood–brain barrier were studied with the help of transmission electron microscopy (TEM) and light microscopy.

Results

Compared with control animals, kaolin injection into the ventricles resulted in a dramatic increase in ventricular volume with compression of basal cisterns, brain shift and periventricular edema (as observed on magnetic resonance imaging [MRI]). The values of ADC in the periventricular and periaqueductal areas significantly increased in the experimental group (P < 0.05). FA decreased by a factor of 2 in the zones of periventricular, periaqueductal white matter and corpus collosum. Histological analysis demonstrated the impairment of the white matter and necrobiotic changes in the cortex. Microsctructural alterations of the myelin fibers were further proved with the help of TEM. Blood–brain barrier ultrastructure assessment showed the loss of its integrity.

Conclusions

The study demonstrated the correlation of the neuroradiological parameters with morphological changes. The abnormality of the FA and ADC parameters in the obstructive hydrocephalus represents a significant implication for the diagnostics and management of hydrocephalus in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bloch O, Auguste KI, Manley GT, Verkman AS (2006) Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab 26:1527–1537

    Article  CAS  PubMed  Google Scholar 

  2. Braun KP, de Graaf RA, Vandertop WP, Gooskens RH, Tulleken KA, Nicolay K (1998) In vivo 1H MR spectroscopic imaging and diffusion weighted MRI in experimental hydrocephalus. Magn Reson Med 40:832–839

    Article  CAS  PubMed  Google Scholar 

  3. Braun KP, Dijkhuizen RM, de Graaf RA, Nicolay K, Vandertop WP, Gooskens RH, Tulleken KA (1997) Cerebral ischemia and white matter edema in experimental hydrocephalus: a combined in vivo MRI and MRS study. Brain Res 757:295–298

    Article  CAS  PubMed  Google Scholar 

  4. Braun KP, van Eijsden P, Vandertop WP, de Graaf RA, Gooskens RH, Tulleken KA, Nikolay K (1999) Cerebral metabolism in experimental hydrocephalus: an in vivo 1H and 31P magnetic resonance spectroscopy study. J Neurosurg 91:660–668

    Article  CAS  PubMed  Google Scholar 

  5. Braun KP, Vandertop WP, Gooskens RH, Tulleken KA, Nicolay K (2000) NMR spectroscopic evaluation of cerebral metabolism in hydrocephalus: a review. Neurol Res 22:51–64

    CAS  PubMed  Google Scholar 

  6. Castejón OJ (2009) Blood–brain barrier ultrastructural alterations in human congenital hydrocephalus and Arnold-Chiari malformation. Folia Neuropathol 47:11–19

    PubMed  Google Scholar 

  7. Cauley KA, Cataltepe O (2014) Axial diffusivity of the corona radiata correlated with ventricular size in adult hydrocephalus. AJR Am J Roentgenol 203:170–179

    Article  PubMed  Google Scholar 

  8. Cherian S, Whitelaw A, Thoresen M, Love S (2004) The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol 14:305–311

    Article  CAS  PubMed  Google Scholar 

  9. Chua CO, Chahboune H, Braun A, Dummula K, Chua CE, Yu J, Ungvari Z, Sherbany AA, Hyder F, Ballabh P (2009) Consequences of intraventricular hemorrhage in a rabbit pup model. Stroke 40:3369–3377

    Article  PubMed Central  PubMed  Google Scholar 

  10. Collins P (1979) Experimental obstructive hydrocephalus in the rat: a scanning electron microscopic study. Neuropathol Appl Neurobiol 5:457–468

    Article  CAS  PubMed  Google Scholar 

  11. De Lahunta A (1983) Veterinary neuroanatomy and clinical neurology, 2nd edn. WB Saunders, Philadelphia

    Google Scholar 

  12. Del Bigio MR, Kanfer JN, Zhang YW (1997) Myelination delay in the cerebral white matter of immature rats with kaolin-induced hydrocephalus is reversible. J Neuropathol Exp Neurol 56:1053–1066

    Article  PubMed  Google Scholar 

  13. Del Bigio MR, Khan OH, da Silva LL, Juliet PA (2012) Cerebral white matter oxidation and nitrosylation in young rodents with kaolin-induced hydrocephalus. J Neuropathol Exp Neurol 71:274–288

    Article  PubMed  Google Scholar 

  14. Del Bigio MR, Slobodian I, Schellenberg AE, Buist RJ, Kemp-Buors TL (2011) Magnetic resonance imaging indicators of blood–brain barrier and brain water changes in young rats with kaolin-induced hydrocephalus. Fluids Barriers CNS 8:22

    Article  PubMed Central  PubMed  Google Scholar 

  15. Edvinsson L, West KA (1971) The time-course of intracranial hypertension as recorded in conscious rabbits after treatment with different amounts of intracisternally injected kaolin. Acta Neurol Scand 47:439–450

    Article  CAS  PubMed  Google Scholar 

  16. Eskandari R, Abdullah O, Mason C, Lloyd KE, Oeschle AN, McAllister JP 2nd (2014) Differential vulnerability of white matter structures to experimental infantile hydrocephalus detected by diffusion tensor imaging. Childs Nerv Syst 30:1651–1661

    Article  PubMed  Google Scholar 

  17. Fishman RA (1992) Cerebrospinal fluid in diseases of the nervous system. W.B. Saunders, Philadelphia

    Google Scholar 

  18. Haworth CS, Sobieski MW, Scheld WM, Park TS (1990) Staphylococcus aureus ventriculitis treated with single-dose intraventricular vancomycin or daptomycin (LY146032): bacterial and antibiotic kinetics in hydrocephalic rabbits. Antimicrob Agents Chemother 34:245–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hoza D, Vlasák A, Hořínek D, Sameš M, Alfieri A (2014) DTI-MRI biomarkers in the search for normal pressure hydrocephalus aetiology: a review. Neurosurg Rev. doi:10.1007/s10143-014-0584-0

  20. Ishii K, Hashimoto M, Hayashida K, Hashikawa K, Chang CC, Nakagawara J, Nakayama T, Mori S, Sakakibara R (2011) A multicenter brain perfusion SPECT study evaluating idiopathic normal-pressure hydrocephalus on neurological improvement. Dement Geriatr Cogn Disord 32:1–10

    Article  PubMed  Google Scholar 

  21. Ivkovic M, Liu B, Ahmed F, Moore D, Huang C, Raj A, Kovanlikaya I, Heier L, Relkin N (2013) Differential diagnosis of normal pressure hydrocephalus by MRI mean diffusivity histogram analysis. AJNR Am J Neuroradiol 34:1168–1174

    Article  CAS  PubMed  Google Scholar 

  22. Johnson MJ, Ayzman I, Wood AS, Tkach JA, Klauschie J, Skarupa DJ, McAllister JP, Luciano MG (1999) Development and characterization of an adult model of obstructive hydrocephalus. J Neurosci Methods 91:55–65

    Article  CAS  PubMed  Google Scholar 

  23. Johnston MG, Del Bigio MR, Drake JM, Armstrong D, Di Curzio DL, Bertrand J (2013) Pre- and post-shunting observations in adult sheep with kaolin-induced hydrocephalus. Fluids Barriers CNS 10:24

    Article  PubMed Central  PubMed  Google Scholar 

  24. Klarica M, Oresković D, Bozić B, Vukić M, Butković V, Bulat M (2009) New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience 158:1397–1405

    Article  CAS  PubMed  Google Scholar 

  25. Kobayashi S, Kato K, Rodríguez Guerrero A, Baba H, Yoshizawa H (2012) Experimental syringohydromyelia induced by adhesive arachnoiditis in the rabbit: changes in the blood-spinal cord barrier, neuroinflammatory foci, and syrinx formation. J Neurotrauma 29:1803–1816

    Article  PubMed  Google Scholar 

  26. Kondziella D, Eyjolfsson EM, Saether O, Sonnewald U, Risa O (2009) Gray matter metabolism in acute and chronic hydrocephalus. Neuroscience 159:570–577

    Article  CAS  PubMed  Google Scholar 

  27. Kondziella D, Sonnewald U, Tullberg M, Wikkelso C (2008) Brain metabolism in adult chronic hydrocephalus. J Neurochem 106:1515–1524

    Article  CAS  PubMed  Google Scholar 

  28. Kulkarni AV, Riva-Cambrin J, Browd SR, Drake JM, Holubkov R, Kestle JR, Limbrick DD, Rozzelle CJ, Simon TD, Tamber MS, Wellons JC 3rd, Whitehead WE, Hydrocephalus Clinical Research Network (2014) Endoscopic third ventriculostomy and choroid plexus cauterization in infants with hydrocephalus: a retrospective Hydrocephalus Clinical Research Network study. J Neurosurg Pediatr 14:224–229

    Article  PubMed  Google Scholar 

  29. Kulkarni AV, Riva-Cambrin J, Butler J, Browd SR, Drake JM, Holubkov R, Kestle JR, Limbrick DD, Simon TD, Tamber MS, Wellons JC 3rd, Whitehead WE, Hydrocephalus Clinical Research Network (2013) Outcomes of CSF shunting in children: comparison of Hydrocephalus Clinical Research Network cohort with historical controls: clinical article. J Neurosurg Pediatr 12:334–338

    Article  PubMed  Google Scholar 

  30. Kurt G, Cemil B, Borcek AO, Borcek P, Akyurek N, Sepici A, Ceviker N (2010) Infliximab administration reduces neuronal apoptosis on the optic pathways in a rabbit hydrocephalus model: a preliminary report. Br J Neurosurg 24:275–279

    Article  PubMed  Google Scholar 

  31. Leliefeld PH, Gooskens RH, Braun KP, Ramos LM, Uiterwaal CS, Regli LP, Tulleken CA, Kappelle LJ, Hanlo PW (2009) Longitudinal diffusion-weighted imaging in infants with hydrocephalus: decrease in tissue water diffusion after cerebrospinal fluid diversion. J Neurosurg Pediatr 4:56–63

    Article  PubMed  Google Scholar 

  32. Leliefeld PH, Gooskens RH, Vincken KL, Ramos LM, van der Grond J, Tulleken CA, Kappelle LJ, Hanlo PW (2008) Magnetic resonance imaging for quantitative flow measurement in infants with hydrocephalus: a prospective study. J Neurosurg Pediatr 2:163–170

    Article  PubMed  Google Scholar 

  33. Lu Y, Qian L, Zhang Q, Chen B, Gui L, Huang D, Cheng G, Chen L (2013) Palmitateinduces apoptosis in mouse aortic endothelial cells and endothelial dysfunction in mice fed high-calorie and high-cholesterol diets. Life Sci 92:1165–1173

    Article  CAS  PubMed  Google Scholar 

  34. Massicotte EM, Buist R, Del Bigio MR (2000) Altered diffusion and perfusion in hydrocephalic rat brain: a magnetic resonance imaging analysis. J Neurosurg 92:442–447

    Article  CAS  PubMed  Google Scholar 

  35. Reddy GK, Bollam P, Caldito G (2014) Long-term outcomes of ventriculoperitoneal shunt surgery in patients with hydrocephalus. World Neurosurg 81:404–410

    Article  PubMed  Google Scholar 

  36. Scheel M, Diekhoff T, Sprung C, Hoffmann KT (2012) Diffusion tensor imaging in hydrocephalus—findings before and after shunt surgery. Acta Neurochir (Wien) 154:1699–1706

    Article  Google Scholar 

  37. Slobodian I, Krassioukov-Enns D, Del Bigio MR (2007) Protein and synthetic polymer injection for induction of obstructive hydrocephalus in rats. Cerebrospinal Fluid Res 4:9

    Article  PubMed Central  PubMed  Google Scholar 

  38. Tarnaris A, Toma AK, Pullen E, Chapman MD, Petzold A, Cipolotti L, Kitchen ND, Keir G, Lemieux L, Watkins LD (2011) Cognitive, biochemical, and imaging profile of patients suffering from idiopathic normal pressure hydrocephalus. Alzheimers Dement 7:501–508

    Article  CAS  PubMed  Google Scholar 

  39. Torvik A, Stenwig AE, Finseth I (1981) The pathology of experimental obstructive hydrocephalus. A scanning electron microscopic study. Acta Neuropathol 54:143–147

    Article  CAS  PubMed  Google Scholar 

  40. Tully HM, Dobyns WB (2014) Infantile hydrocephalus: a review of epidemiology, classification and causes. Eur J Med Genet 57:359–368

    Article  PubMed  Google Scholar 

  41. Ueno M, Tomita S, Nakagawa T, Ueki M, Iwanaga Y, Ono J, Onodera M, Huang CL, Kanenishi K, Shimada A, Maekawa N, Sakamoto H (2006) Effects of aging and HIF-1alpha deficiency on permeability of hippocampal vessels. Microsc Res Tech 69:29–35

    Article  CAS  PubMed  Google Scholar 

  42. Vullo T, Manzo R, Gomez DG, Deck MD, Cahill PT (1998) A canine model of acute hydrocephalus with MR correlation. AJNR Am J Neuroradiol 19:1123–1125

    CAS  PubMed  Google Scholar 

  43. Weller RO, Mitchell J, Griffin RL, Gardner MJ (1978) The effects of hydrocephalus upon the developing brain. Histological and quantitative studies of the ependyma and subependyma in hydrocephalic rats. J Neurol Sci 36:383–402

    Article  CAS  PubMed  Google Scholar 

  44. Wen YD, Wang H, Kho SH, Rinkiko S, Sheng X, Shen HM, Zhu YZ (2013) Hydrogen sulfide protects HUVECs against hydrogen peroxide induced mitochondrial dysfunction and oxidative stress. PLoS One 8:e53147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Yuan W, McAllister JP 2nd, Lindquist DM, Gill N, Holland SK, Henkel D, Rajagopal A, Mangano FT (2012) Diffusion tensor imaging of white matter injury in a rat model of infantile hydrocephalus. Childs Nerv Syst 28:47–54

    Article  PubMed  Google Scholar 

  46. Ziegelitz D, Starck G, Kristiansen D, Jakobsson M, Hultenmo M, Mikkelsen IK, Hellström P, Tullberg M, Wikkelsø C (2014) Cerebral perfusion measured by dynamic susceptibility contrast MRI is reduced in patients with idiopathic normal pressure hydrocephalus. J Magn Reson Imaging 39:1533–1542

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Olga G. Genbach, Nelly V. Koroleva, Dmitriy N. Suslov, Oleg V. Galibin, Tatiana V. Zakoldaeva, Irina V. Kononova, Yulia E. Shevchuk, Oleg A. Don for assistance in animal experiments.

Conflicts of interest

None.

Funding

This work was supported by grants from the Russian Foundation for Basic Research, nos. 140800614 and 130401299.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim A. Shevtsov.

Additional information

Comment

This is a well-written and illustrated study investigating the correlation between the changes of neuroradiological and morphological parameters in an experimental model of acute obstructive hydrocephalus. It is clear that conventional MRI sequences provide accurate data to help the diagnosis of acute and chronic hydrocephalus. Nonetheless, the use of diffusion sequences demonstrated that values of apparent diffusion coefficient (ADC) in the periventricular and periaqueductal areas were significantly increased and fractional anisotropy was decreased in the zones of periventricular, periaqueductal white matter and corpus callosum. These features could be attributed to the integrity loss of the blood–brain barrier. Histological analysis confirms this hypothesis and results presented here by the authors are in accordance with previously published observations of ultrastructural changes in blood–brain barrier in patients with congenital hydrocephalus. Together, the results of this study suggest that restoration of blood–brain barrier permeability may play a role in some stage of the treatment of hydrocephalus. Further studies are warranted.

Alfredo Conti

Messina, Italy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevtsov, M.A., Senkevich, K.A., Kim, A.V. et al. Changes of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in the model of experimental acute hydrocephalus in rabbits. Acta Neurochir 157, 689–698 (2015). https://doi.org/10.1007/s00701-014-2339-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-014-2339-7

Keywords

Navigation