Skip to main content
Log in

Perfusion brain SPECT in assessing motor improvement after deep brain stimulation in Parkinson’s disease

  • Clinical Article - Movement Disorders
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become an established therapeutic approach for the management of patients with late-stage idiopathic Parkinson’s disease (PD). The aim of the present study was to assess regional cerebral blood flow (rCBF) changes related to motor improvement.

Methods

Twenty-one PD patients underwent two rCBF SPECT studies at rest, once preoperatively in the off-meds state and the other postoperatively (at 6 ± 2 months) in the off medication/on stimulation state. Patients were classified according to the UPDRS and H&Y scale. NeuroGam software was used to register, quantify, and compare two sequential brain SPECT studies of the same patient in order to investigate rCBF changes during STN stimulation in comparison with preoperative rCBF. The relationship between rCBF and UPDRS scores was used as a covariate of interest.

Results

Twenty patients showed clinical improvement during the first months after surgery, resulting in a 44 % reduction of the UPDRS motor score. The administered mean daily levodopa dose significantly decreased from 850 ± 108 mg before surgery to 446 ± 188 mg during the off-meds state (p < 0.001, paired t test). At the 6-month postoperative assessment, we noticed rCBF increases in the pre-supplementary motor area (pre-SMA) and the premotor cortex (PMC) (mean rCBF increase = 10.2 %, p < 0.05), the dorsolateral prefrontal cortex and in associative and limbic territories of the frontal cortex (mean rCBF increase = 8.2 %, p > 0.05). A correlation was detected between the improvement in motor scores and the rCBF increase in the pre-SMA and PMC (r = 0.89, p < 0.001).

Conclusions

Our study suggests that STN stimulation leads to improvement in neural activity and rCBF increase in higher-order motor cortical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albin R, Young AB, Penny JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  PubMed  CAS  Google Scholar 

  2. Alexander GE, Crutcher MO, De Long MR (1990) Basal ganglia: thalamocortical circuits—parallel substrates for motor, oculomotor, prefrontal and limbic functions. Prog Brain Res 85:119–146

    Article  PubMed  CAS  Google Scholar 

  3. Antonini A, Marotta G, Benti R, Landi A, De Notaris R, Mariani C, Gerundini P, Pezzoli G, Gaini SM (2003) Brain flow changes before and after deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Neurol Sci 24:151–152

    Article  PubMed  CAS  Google Scholar 

  4. Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, Kaplitt MG, Feigin A, Eidelberg D (2006) Network modulation in the treatment of Parkinson’s disease. Brain 129:2667–2678

    Article  PubMed  Google Scholar 

  5. Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5:382–389

    Article  PubMed  CAS  Google Scholar 

  6. Bergman H, Wichmann T, Karmon B, De Long MR (1994) The primate subthalamic nucleus. II. Neural activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520

    PubMed  CAS  Google Scholar 

  7. Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85:1351–1356

    PubMed  CAS  Google Scholar 

  8. Burbaud P, Gross C, Benazzouz A, Coussemacq M, Bioulac B (1995) Reduction of apomorphine-induced rotational behaviour by subthalamic lesion in 6-OHDA lesioned rats is associated with normalization of firing rate and discharge pattern of pars reticulata neurons. Exp Brain Res 105:48–58

    Article  PubMed  CAS  Google Scholar 

  9. Campbell MC, Karimi M, Weaver PM, Wu J, Perantie DC, Golchin NA, Tabbal SD, Perlmutter JS, Hershey T (2008) Neural correlates of STN DBS-induced cognitive variability in Parkinson disease. Neuropsychologia 46:3162–3169

    Article  PubMed  CAS  Google Scholar 

  10. Ceballos-Baumann AO, Boecker H, Bartenstein P, von Falkenhayn I, Riescher H, Conrad B (1999) A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson’s disease: enhanced movement-related activity of motorassociation cortex and decreased motor cortex resting activity. Arch Neurol 56:997–1003

    Article  PubMed  CAS  Google Scholar 

  11. Davis KD, Taub E, Houle S, Lang AE, Dostrovsky JO, Tasker RR, Lozano AM (1997) Globus pallidus stimulation activates the cortical motor system during alleviation of parkinsonian symptoms. Nat Med 3:671–674

    Article  PubMed  CAS  Google Scholar 

  12. De Long MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  Google Scholar 

  13. Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, Lozano AM (2000) Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 84:570–574

    PubMed  CAS  Google Scholar 

  14. Eidelberg D, Moeller JR, Ishiwaka T, Dhawan V, Spetsieris P, Silbersweig D (1996) Regional metabolic correlates of metabolic outcome following unilateral pallidotomy for Parkinson’s disease. Ann Neurol 39:450–459

    Article  PubMed  CAS  Google Scholar 

  15. Fahn S, Elton RL (1987) Members of the UPDRS development committee. Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Goldstein M, Calne DB (eds) Recent developments in Parkinson’s disease, Vol II. Macmillan Healthcare Information, Florham Park, NJ, pp 153–163

    Google Scholar 

  16. Firbank MJ, Molloy S, McKeith IG, Burn DJ, O’Brien JT (2005) Longitudinal change in 99mTcHMPAO cerebral perfusion SPECT in Parkinson’s disease over one year. J Neurol Neurosurg Psychiatry 76:1448–1451

    Article  PubMed  CAS  Google Scholar 

  17. Grafton ST, Turner RS, Desmurget M, Bakay R, DeLong M, Vitek J, Crutcher M (2006) Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease. Neurology 66:1192–1199

    Article  PubMed  CAS  Google Scholar 

  18. Graybiel AM (2000) The basal ganglia. Curr Biol 14:509–511

    Article  Google Scholar 

  19. Haegelen C, Verin M, Broche BA, Prigent F, Jannin P, Gibaud B, Morandi X (2005) Does subthalamic nucleus stimulation affect the frontal limbic areas? A single-photon emission computed tomography study using a manual anatomical segmentation method. Surg Radiol Anat 27:389–394

    Article  PubMed  CAS  Google Scholar 

  20. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23:1916–1923

    PubMed  CAS  Google Scholar 

  21. Haslinger B, Kalteis K, Boecker H, Alesch F, Ceballos-Baumann AO (2005) Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson’s disease. NeuroImage 28:598–606

    Article  PubMed  Google Scholar 

  22. Hershey T, Revilla FJ, Wernle A, McGee-Minnich L, Antenor JV, Videen TO, Dowling JL, Mink JW, Perlmutter JS (2003) Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology 61:816–821

    Article  PubMed  CAS  Google Scholar 

  23. Hess G, Aizenman CD, Donogue JP (1996) Conditions for the induction of long-term potentiation on layer II/III horizontal connections of the rat motor cortex. J Neurophysiol 75:1765–1778

    PubMed  CAS  Google Scholar 

  24. Hilker R, Voges J, Weisenbach S, Kalbe E, Burghaus L, Ghaemi M, Lehrke R, Koulousakis A, Herholz K, Sturm V, Heiss WD (2004) Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab 24:7–16

    Article  PubMed  CAS  Google Scholar 

  25. Hirsch EC (2000) Nigrostriatal system plasticity in Parkinson’s disease: effect of dopaminergic denervation and treatment. Ann Neurol 47(4 suppl 1):115–120

    Google Scholar 

  26. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  PubMed  CAS  Google Scholar 

  27. Huang C, Tang C, Feigin A, Lesser M, Ma Y, Pourfar M, Dhawan V, Eidelberg D (2007) Changes in network activity with the progression of Parkinson’s disease. Brain 130:1834–1846

    Article  PubMed  Google Scholar 

  28. Imon Y, Matsuda H, Ogawa M, Kogure D, Sunohara N (1999) SPECT image analysis using statistical parametric mapping in patients with Parkinson’s disease. J Nucl Med 40:1583–1589

    PubMed  CAS  Google Scholar 

  29. Karimi M, Golchin N, Tabbal SD, Hershey T, Videen TO, Wu J, Usche JW, Revilla FJ, Hartlein JM, Wernle AR, Mink JW, Perlmutter JS (2008) Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease. Brain 131:2710–2719

    Article  PubMed  CAS  Google Scholar 

  30. Keller A, Arissian K, Asanuma H (1992) Synaptic proliferation in the motor cortex of adult cats after long-term thalamic stimulation. J Neurophysiol 68:295–308

    PubMed  CAS  Google Scholar 

  31. Krack P, Benazzouz A, Pollak P, Limousin P, Piallat B, Hoffmann D, Xie J, Benabid AL (1998) Treatment of tremor in Parkinson’s disease by subthalamic nucleus stimulation. Mov Disord 13:907–914

    Article  PubMed  CAS  Google Scholar 

  32. Lanciego JL, López IP, Rico AJ, Aymerich MS, Pérez-Manso M, Conte L, Combarro C, Roda E, Molina C, Gonzalo N, Castle M, Tuñón T, Erro E, Barroso-Chinea P (2009) The search for a role of the caudal intralaminar nuclei in the pathophysiology of Parkinson's disease. Brain Res Bull 78:55–59

    Article  PubMed  CAS  Google Scholar 

  33. Lang AE, Lozano AM (1998) Parkinson’s disease. N Engl J Med 16:1130–1143

    Article  Google Scholar 

  34. Limousin P, Pollack P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, Perret JE, Benabid AL (1995) Effect on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:91–95

    Article  PubMed  CAS  Google Scholar 

  35. Lopiano L, Rizzone M, Bergamasco B, Tavella A, Torre E, Perozzo P, Valentini MC, Lanotte M (2001) Deep brain stimulation of the subthalamic nucleus: clinical effectiveness and safety. Neurology 56:552–554

    Article  PubMed  CAS  Google Scholar 

  36. Moro E, Scerrati M, Romito LM, Roselli R, Tonali P, Albanese A (1999) Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurology 53:85–90

    Article  PubMed  CAS  Google Scholar 

  37. Nakano K, Kayahara T, Tsutsumi T, Ushiro H (2000) Neural circuits and functional organization of the striatum. J Neurol 247(suppl 5):1–15

    Article  Google Scholar 

  38. Obeso JA, Rodríguez-Oroz MC, Rodríguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23(suppl):8–19

    Article  Google Scholar 

  39. Obeso JA, Rodriguez-Oroz M, Marin C, Alonso F, Zamarbide I, Lanciego JL, Rodriguez-Diaz M (2004) The origin of motor fluctuations in Parkinson's disease: importance of dopaminergic innervation and basal ganglia circuits. Neurology 62(1 Suppl 1):17–30

    Article  Google Scholar 

  40. Otte A (2001) The plasticity of the brain. Eur J Nucl Med 28:263–265

    Article  PubMed  CAS  Google Scholar 

  41. Paschali A, Messinis L, Lyros E, Constantoyannis C, Kefalopoulou Z, Lakiotis V, Papathanasopoulos P, Vassilakos P (2009) Neuropsychological functions and rCBF SPECT in Parkinson’s disease patients considered candidates for deep brain stimulation. Eur J Nucl Med Mol Imaging 36:1851–1858

    Article  PubMed  CAS  Google Scholar 

  42. Payoux P, Remy P, Damier P, Miloudi M, Loubinoux I, Pidoux B, Gaura V, Rascol O, Samson Y, Agid Y (2004) Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease. Arch Neurol 61:1307–1313

    Article  PubMed  Google Scholar 

  43. Piccini P, Lindvall O, Björklund A, Brundin P, Hagell P, Ceravolo R, Oertel W, Quinn N, Samuel M, Rehncrona S, Widner H, Brooks DJ (2000) Delayed recovery of movement related cortical function in Parkinson’s disease after striatal dopaminergic grafts. Ann Neurol 48:689–695

    Article  PubMed  CAS  Google Scholar 

  44. Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ (1992) Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol 232:151–161

    Article  Google Scholar 

  45. Romito LM, Scerrati M, Contarino MF, Bentivoglio AR, Tonati P, Albanese A (2002) Long-term follow-up of subthalamic nucleus stimulation in Parkinson’s disease. Neurology 58:1546–1550

    Article  PubMed  CAS  Google Scholar 

  46. Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L, Berry I, Montastruc JL, Chollet F, Rascol O (2000) Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 123:394–403

    Article  PubMed  Google Scholar 

  47. Samuel M, Ceballos-Baumann AO, Turjanski N, Boecker H, Gorospe A, Linazasoro G, Holmes AP, DeLong MR, Vitek JL, Thomas DG, Quinn NP, Obeso JA, Brooks DJ (1997) Pallidotomy in Parkinson’s disease increases supplementary motor area and prefrontal activation during performance of volitional movements: an H215O PET study. Brain 120:1301–1313

    Article  PubMed  Google Scholar 

  48. Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain New York. Thieme, Stuttgart

    Google Scholar 

  49. Schapira AH (1999) Science, medicine, and the future: Parkinson’s disease. Br Med J 318:311–314

    Article  CAS  Google Scholar 

  50. Sestini S, Scotto di Luzio A, Ammannati F, De Cristofaro MT, Passeri A, Martini S, Pupi A (2002) Changes in regional cerebral blood flow caused by deep-brain stimulation of the subthalamic nucleus in Parkinson’s disease. J Nucl Med 43:725–732

    PubMed  Google Scholar 

  51. Sestini S, Ramat S, Formiconi AR, Ammannati F, Sorbi S, Pupi A (2005) Brain networks underlying the clinical effects of long-term subthalamic stimulation for Parkinson’s disease: a 4-year follow-up study with rCBF SPECT. J Nucl Med 46:1444–1454

    PubMed  Google Scholar 

  52. Sestini S, Pupi A, Ammannati F, Silvia R, Sorbi S, Castagnoli A (2007) Are there adaptive changes in the human brain of patients with Parkinson’s disease treated with long-term deep brain stimulation of the subthalamic nucleus? A 4-year follow-up study with regional cerebral blood flow SPECT. Eur J Nucl Med Mol Imaging 34:1646–1657

    Article  PubMed  Google Scholar 

  53. Temel Y, Kessels A, Tan S, Topdag A, Boon P, Visser-Vandewalle V (2006) Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 12:265–272

    Article  PubMed  Google Scholar 

  54. Valldeoriola F, Pilleri M, Tolosa E, Molinuevo JL, Rumia J, Ferrer E (2002) Bilateral subthalamic stimulation monotherapy in advanced Parkinson’s disease: long-term follow-up of patients. Mov Disord 17:125–132

    Article  PubMed  Google Scholar 

  55. Vesper J, Klostermann F, Stockhammer F, Funk TH, Brock M (2002) Results of chronic subthalamic nucleus stimulation for Parkinson’s disease: a 1-year follow-up study. Surg Neurol 57:306–311

    Article  PubMed  CAS  Google Scholar 

  56. Vingerhoets FJG, Villemure JG, Temperli P, Pollo C, Pralong E, Ghika J (2002) Subthalamic DBS replaces levodopa in Parkinson’s disease: two-year follow-up. Neurology 58:396–401

    Article  PubMed  Google Scholar 

  57. Voon V, Kubu C, Krack P, Houeto JL, Tröster AI (2006) Deep brain stimulation: neuropsychological and neuropsychiatric issues. Mov Disord 21:305–327

    Article  Google Scholar 

  58. Ziemann U, Hallett M, Cohen LG (1998) Mechanisms of deafferentation-induced plasticity in human motor cortex. J Neurosci 18:7000–7007

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Miltos Georgiopoulos, Zinovia Kefalopoulou, and Elli Markaki for helpful advice and assistance.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Paschali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paschali, A., Constantoyannis, C., Angelatou, F. et al. Perfusion brain SPECT in assessing motor improvement after deep brain stimulation in Parkinson’s disease. Acta Neurochir 155, 497–505 (2013). https://doi.org/10.1007/s00701-012-1610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-012-1610-z

Keywords

Navigation