Skip to main content
Log in

Are there adaptive changes in the human brain of patients with Parkinson’s disease treated with long-term deep brain stimulation of the subthalamic nucleus? A 4-year follow-up study with regional cerebral blood flow SPECT

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this follow-up study was to assess persistent motor and regional cerebral blood flow (rCBF) changes in patients with Parkinson’s disease (PD) treated with high-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN).

Methods

Ten PD patients with STN-DBS underwent three rCBF SPECT studies at rest, once preoperatively in the off-drug condition (T0), and twice postoperatively in the off-drug/off-stimulation conditions at 5 ± 2 (T1) and 42 ± 7 months (T2). Patients were assessed using the UPDRS, H&Y and S&E scales. SPM was used to investigate baseline rCBF changes from the preoperative condition to the postoperative conditions and the relationship between rCBF and UPDRS scores used as covariate of interest.

Results

Parkinsonian patients showed a clinical improvement which was significant only on follow-up at 42 months. The main effect of treatment from T0 to T1 was to produce baseline rCBF increases in the pre-supplementary motor area (pre-SMA), premotor cortex and somatosensory association cortex. From T1 to T2 a further baseline rCBF increase was detected in the pre-SMA (p < 0.0001). A correlation was detected between the slight improvement in motor scores and the rCBF increase in the pre-SMA (p < 0.0001), which is known to play a crucial role in clinical progression.

Conclusion

Our study suggests the presence of adaptive functional changes in the human brain of PD patients treated with long-term STN-DBS. Such adaptive processes seem to occur in the pre-SMA and to play only a slightly beneficial role in terms of functional compensation of motor impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hallett M. Plasticity. In: Mazziotta JC, Toga AW, Frackowiak RSJ, editors. Brain mapping: the disorders. San Diego, CA: Academic Press; 2000. p. 569–86.

    Google Scholar 

  2. Otte A. The plasticity of the brain. Eur J Nucl Med 2001;28:263–5.

    Article  PubMed  CAS  Google Scholar 

  3. Chollet F, Weiller C. Recovery of neurological function. In: Mazziotta JC, Toga AW, Frackowiak RSJ, editors. Brain mapping: the disorders. San Diego, CA: Academic Press; 2000. p. 587–97.

    Google Scholar 

  4. Valldeoriola F, Pilleri M, Tolosa E, Molinuevo JL, Rumia J, Ferrer E. Bilateral subthalamic stimulation monotherapy in advanced Parkinson’s disease: long-term follow-up of patients. Mov Disord 2002;17:125–32.

    Article  PubMed  Google Scholar 

  5. Vingerhoets FJG, Villemure JG, Temperli P, Pollo C, Pralong E, Ghika J. Subthalamic DBS replaces levodopa in Parkinson’s disease. Two-year follow-up. Neurology 2002;58:396–401.

    PubMed  Google Scholar 

  6. Haberler C, Alesch F, Mazal PR, Pilz P, Jellinger K, Pinter MM, et al. No tissue damage by chronic deep brain stimulation in Parkinson’s disease. Ann Neurol 2000;48:372–6.

    Article  PubMed  CAS  Google Scholar 

  7. Albin R, Young AB, Penny JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989;12:366–75.

    Article  PubMed  CAS  Google Scholar 

  8. De Long MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13:281–5.

    Article  Google Scholar 

  9. Benazzouz A, Hallet M. Mechanism of action of deep brain stimulation. Neurology 2000;55 Suppl 6:13–6.

    Google Scholar 

  10. Lang AE, Lozano AM. Parkinson’s disease. N Engl J Med 1998;16:1130–43.

    Article  Google Scholar 

  11. Limousin P, Greene J, Pollak P, Rothwell J, Benabid AL, Frackowiak R. Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidal stimulation in Parkinson’s disease. Ann Neurol 1997;42:283–91.

    Article  PubMed  CAS  Google Scholar 

  12. Sestini S, Scotto di Luzio A, Ammannati F, De Cristofaro MTR, Passeri A, Martini S, et al. Changes in regional cerebral blood flow caused by deep-brain stimulation of the subthalamic nucleus in Parkinson’s disease. J Nucl Med 2002;43:725–32.

    PubMed  Google Scholar 

  13. Turner RS, Henry T, Grafton S. Therapeutics: surgical. In: Mazziotta JC, Toga AW, Frackowiak RSJ, editors. Brain mapping: the disorders. San Diego, CA: Academic Press; 2000. p. 613–32.

    Google Scholar 

  14. Sestini S, Ramat S, Formiconi AR, Ammannati F, Sorbi S, Pupi A. Brain networks underlying the clinical effects of long-term subthalamic stimulation for Parkinson’s disease: a 4-year follow-up study with rCBF SPECT. J Nucl Med 2005;46:1444–54.

    PubMed  Google Scholar 

  15. Boccacci P, Bonetto P, Calvini P, Formiconi AR. A simple model for the efficient correction of collimators blur in 3D SPECT images. Inv Probl 1999;15:907–30.

    Article  Google Scholar 

  16. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 1991;11:690–9.

    PubMed  CAS  Google Scholar 

  17. Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ. Spatial registration and normalization of images. Human Brain Mapp 1995;3:165–89.

    Article  Google Scholar 

  18. Lancaster JL, Woldorff MG, Parsons LM. Automated Talairach atlas labels for functional brain mapping. Human Brain Mapp 2000;10:120–31.

    Article  CAS  Google Scholar 

  19. Benabid AL, Koudsie A, Benazzouz A, Piallat B, van Blerkom N, Fraix V, et al. Subthalamic nucleus deep brain stimulation. Prog Neurol Surg 2000;15:196–226.

    Article  Google Scholar 

  20. Kumar R, Lozano AM, Kim YJ, Hutchison WD, Sime E, Halket E, et al. Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology 1998;51:850–5.

    PubMed  CAS  Google Scholar 

  21. Molinuevo JL, Valldeoriola F, Tolosa E, Rumià J, Valls-Solé J, Roldan H, et al. Levodopa withdrawal after bilateral subthalamic nucleus stimulation in advanced Parkinson disease. Arch Neurol 2000;57:983–8.

    Article  PubMed  CAS  Google Scholar 

  22. Thobois S, Mertens P, Guenot M, Hermier M, Mollion H, Bouvard M, et al. Subthalamic nucleus stimulation in Parkinson’s disease. Clinical evaluation of 18 patients. J Neurol 2002;249:529–34.

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez-Oroz MC, Gorospe LM, Guridi J, Ramos E, Linazasoro G, Rodriguez-Palmero M, et al. Bilateral deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Neurology 2000;55 Suppl 6:45–51.

    Google Scholar 

  24. Simuni T, Jaggi JL, Mulholland H, Hurtig H, Colcher A, Siderowe AD, et al. Bilateral stimulation of the subthalamic nucleus in patients with Parkinson disease: a study of efficacy and safety. J Neurosurg 2002;96:666–72.

    PubMed  Google Scholar 

  25. Østergaard K, Sunde N. Evolution of Parkinson’s disease during 4 years of bilateral deep brain stimulation of the subthalamic nucleus. Mov Disord 2006;21:624–31.

    Article  PubMed  Google Scholar 

  26. Schüpbach WMM, Chastan N, Houeto JL, Mesnage V, Bonnet AM, Czernecki V, et al. Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. J Neurol Neurosurg Psychiatry 2005;76:1640–4.

    Article  PubMed  Google Scholar 

  27. Geday J, Østergaard K, Gjedde A. Stimulation of subthalamic nucleus inhibits emotional activation of fusiform gyrus. Neuroimage 2006;33:706–14.

    Article  PubMed  Google Scholar 

  28. Temperli P, Ghika J, Villemure JG, Burhard PR, Bogousslavsky J, Vingerhoets FJG. How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology 2003;60:78–81.

    Article  PubMed  CAS  Google Scholar 

  29. Maesawa S, Kaneoke Y, Kajita Y, Usui N, Misawa N, Nakayama A, et al. Long-term stimulation of the subthalamic nucleus in hemiparkinsonian rats: neuroprotection of dopaminergic neurons. J Neurosurg 2004;100:679–87.

    Article  PubMed  CAS  Google Scholar 

  30. Lokkegaard A, Werdelin LM, Regeur L, Karlsborg M, Jensen SR, Brodsgaard E, et al. Dopamine transporter imaging and the effects of deep brain stimulation in patients with Parkinson’s disease. Eur J Nucl Med Mol Imaging 2007;3:508–16.

    Article  CAS  Google Scholar 

  31. Seibyl J, Jennings D, Tabamo R, Marek K. Unique roles of SPET brain imaging in clinical and research studies. Lessons from Parkinson’s disease research. Q J Nucl Med Mol Imaging 2005;49:215–21.

    PubMed  CAS  Google Scholar 

  32. Warnke PC. STN stimulation and neuroprotection in Parkinson’s disease—when beautiful theories meet ugly facts. J Neurol Neurosurg Psychiatry 2005;76:1186–7.

    Article  PubMed  CAS  Google Scholar 

  33. Windels F, Bruet N, Poupard A, Urbain N, Chouvet G, Feuerstein C, et al. Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur J Neurosci 2000;12:4141–6.

    Article  PubMed  CAS  Google Scholar 

  34. Morrish P. Is it time to abandon functional imaging in the study of neuroprotection? Mov Disord 2002;17:229–32.

    Article  PubMed  Google Scholar 

  35. Bezard E, Gross CE, Brotchie JM. Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci 2003;26:215–21.

    Article  PubMed  CAS  Google Scholar 

  36. Hess G, Aizenman CD, Donogue JP. Conditions for the induction of long-term potentiation on layer II/III horizontal connections of the rat motor cortex. J Neurophysiol 1996;75:1765–78.

    PubMed  CAS  Google Scholar 

  37. Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, et al. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 2000;123:394–403.

    Article  PubMed  Google Scholar 

  38. Nudo RJ, Plautz EJ, Frost SB. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 2001;24:1000–19.

    Article  PubMed  CAS  Google Scholar 

  39. Hirsch EC. Nigrostriatal system plasticity in Parkinson’s disease: effect of dopaminergic denervation and treatment. Ann Neurol 2000;47 4 suppl 1:S115–20.

    PubMed  CAS  Google Scholar 

  40. Ziemann U, Hallett M, Cohen LG. Mechanisms of deafferentation-induced plasticity in human motor cortex. J Neurosci 1998;18:7000–7.

    PubMed  CAS  Google Scholar 

  41. Keller A, Arissian K, Asanuma H. Synaptic proliferation in the motor cortex of adult cats after long-term thalamic stimulation. J Neurophysiol 2002;68:295–308.

    Article  Google Scholar 

  42. Lang AE, Obeso JA. Challenges in Parkinson’s disease: restoration of the nigrostriatal dopamine system is not enough. Lancet Neurol 2004;3:309–16.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stelvio Sestini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sestini, S., Pupi, A., Ammannati, F. et al. Are there adaptive changes in the human brain of patients with Parkinson’s disease treated with long-term deep brain stimulation of the subthalamic nucleus? A 4-year follow-up study with regional cerebral blood flow SPECT. Eur J Nucl Med Mol Imaging 34, 1646–1657 (2007). https://doi.org/10.1007/s00259-007-0428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0428-z

Keywords

Navigation