Skip to main content

Advertisement

Log in

Adverse radiation effects after Gamma Knife Surgery in relation to dose and volume

  • Clinical Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Introduction

The relationship between target volume and adverse radiation effects (AREs) at low prescription doses requires elucidation. The development of AREs in three series of patients treated in the Gamma Knife is analysed in relation to prescription dose and target volume.

Materials and methods

There were three groups. In group 1, there were of 275 patients with meningiomas; in group 2, 132 patients with vestibular schwannomas; and in group 3, 107 patients with arteriovenous malformations (AVMs). The minimum follow-up for each group was more than 24 months. All patients were followed up at six monthly intervals. The patients with tumours received a prescription dose of 12 Gy, which was varied to protect normal structures but not in relation to tumour volume per se. The desired AVM prescription dose was 25 Gy, but this was also reduced to protect normal structures and to keep the total dose within certain pre-defined limits. All AREs refer to intra-parenchymal increased perilesional T2 signal on MR irrespective of clinical correlation.

Results

There was no relationship between tumour volume and the development of ARE in the tumour groups. There was a highly significant relationship between target volume and the development of ARE for the AVMs with their much higher dose. Radiation-induced clinical trigeminal and facial nerve deficits with both vestibular schwannomas and meningiomas were always associated with an increased T2 signal in the neighbouring brainstem parenchyma.

Conclusions

The relationship between target volume and the risk of adverse radiation effects may not apply with lower prescription doses. Individual radiosensitivity may explain why a minority suffer AREs unrelated to target volume. It is possible that radiation-induced brainstem parenchymal damage with concomitant cranial nerve deficits may be commoner after radiosurgery than is usually thought. If tumour control with lower doses is adequate, radiosurgery could be safely considered for larger targets associated with a high risk from microsurgery

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abad JM, Alvarez F, Manrique M, Garcia-Blazquez M (1983) Cerebral arteriovenous malformations comparative results of surgical vs conservative treatment in 112 cases. J Neurosurg Sci 27(3):203–210

    PubMed  CAS  Google Scholar 

  2. Chang JH, Chang JW, Choi JY, Park YG, Chung SS (2003) Complications after gamma knife radiosurgery for benign meningiomas. J Neurol Neurosurg Psychiatry 74(2):226–230

    Article  PubMed  CAS  Google Scholar 

  3. Chin LS, Ma L, DiBiase S (2001) Radiation necrosis following gamma knife surgery: a case-controlled comparison of treatment parameters and long-term clinical follow up. J Neurosurg 94(6):899–904

    Article  PubMed  CAS  Google Scholar 

  4. Chopra R, Kondziolka D, Niranjan A, Lunsford LD, Flickinger JC (2007) Long-term follow-up of acoustic schwannoma radiosurgery with marginal tumor doses of 12 to 13 Gy. Int J Radiat Oncol Biol Phys 68(3):845–851

    PubMed  Google Scholar 

  5. DiBiase SJ, Kwok Y, Yovino S, Arena C, Naqvi S, Temple R, Regine WF, Amin P, Guo C, Chin LS (2004) Factors predicting local tumour control after gamma knife stereotactic radiosurgery for benign intracranial meningiomas. Int J Radiat Oncol Biol Phys 60(5):1515–1519

    PubMed  Google Scholar 

  6. Duma CM, Lunsford LD, Kondziolka D, Harsh GR, Flickinger JC (1993) Stereotactic radiosurgery of cavernous sinus meningiomas as an addition or alternative to microsurgery. Neurosurgery 32(5):699–704

    Article  PubMed  CAS  Google Scholar 

  7. Eustacchio S, Trummer M, Fuchs I, Schrottner O, Sutter B, Pendl G (2002) Preservation of cranial nerve function following Gamma Knife radiosurgery for benign skull base meningiomas: experience in 121 patients with follow-up of 5 to 9.8 years. Acta Neurochir 84:71–76

    CAS  Google Scholar 

  8. Feigl GC, Bundschuh O, Gharabaghi A, Samii M, Horstmann GA (2005) Volume reduction in meningiomas after gamma knife surgery. J Neurosurg 102:189–194

    PubMed  Google Scholar 

  9. Flickinger JC, Kondziolka D, Lunsford LD, Kassam A, Phuong LK, Liscak R, Pollock B (2000) Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous Malformation Radiosurgery Study Group. Int J Radiat Oncol Biol Phys 46(5):1143–1148

    PubMed  CAS  Google Scholar 

  10. Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD (1998) Analysis of neurological sequelae from radiosurgery of arteriovenous malformations: how location affects outcome. Int J Radiat Oncol Biol Phys 40(2):273–278

    PubMed  CAS  Google Scholar 

  11. Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD (2003) Gamma knife radiosurgery of imaging-diagnosed intracranial meningioma. Int J Radiat Oncol Biol Phys 56(3):801–806

    PubMed  Google Scholar 

  12. Flickinger JC, Kondziolka D, Niranjan A, Lunsford LD (2001) Results of acoustic neuroma radiosurgery: an analysis of 5 years’ experience using current methods. J Neurosurg 94(1):1–6

    PubMed  CAS  Google Scholar 

  13. Flickinger JC, Kondziolka D, Niranjan A, Maitz A, Voynov G, Lunsford LD (2004) Acoustic neuroma radiosurgery with marginal tumor doses of 12 to 13 Gy. Int J Radiat Oncol Biol Phys 60(1):225–230

    PubMed  Google Scholar 

  14. Flickinger JC, Lunsford DL, Kondziolka D (1992) Assessment of integrated logistic tolerance predictions for radiosurgery with the gamma knife. In: Steiner L, Lindquist C, Forster D, Backlund E-O (eds) Radiosurgery, baseline and trends. Raven, NewYork, pp 15–24

    Google Scholar 

  15. Flickinger JC, Lunsford LD, Kondziolka D (1991) Dose–volume considerations in radiosurgery. Stereotact Funct Neurosurg 57(1–2):99–105

    Article  PubMed  CAS  Google Scholar 

  16. Flickinger JC, Lunsford LD, Wu A, Kalend A (1991) Predicted dose–volume isoeffect curves for stereotactic radiosurgery with the 60Co gamma unit. Acta Oncol 30(3):363–367

    Article  PubMed  CAS  Google Scholar 

  17. Flickinger JC, Schell MC, Larson DA (1990) Estimation of complications for linear accelerator radiosurgery with the integrated logistic formula. Int J Radiat Oncol Biol Phys 19(1):143–148

    PubMed  CAS  Google Scholar 

  18. Foote KD, Friedman WA, Buatti JM, Meeks SL, Bova FJ, Kubilis PS (2001) Analysis of risk factors associated with radiosurgery for vestibular schwannoma. J Neurosurg 95(3):440–449

    PubMed  CAS  Google Scholar 

  19. Fults D, Kelly DL Jr (1984) Natural history of arteriovenous malformations of the brain: a clinical study. Neurosurgery 15(5):658–662

    Article  PubMed  CAS  Google Scholar 

  20. Ganz JC, Backlund EO, Thorsen FA (1993) The results of Gamma Knife surgery of meningiomas, related to size of tumour and dose. Stereotact Funct Neurosurg 61(Suppl1):23–29

    Article  PubMed  Google Scholar 

  21. Ganz JC, Reda WA, Abdelkarim K, Hafez A (2005) A simple method for predicting imaging-based complications following gamma knife surgery for cerebral arteriovenous malformations. J Neurosurg 102:4–7

    PubMed  Google Scholar 

  22. Ganz JC, Schrottner O, Pendl G (1996) Radiation-induced edema after Gamma Knife treatment for meningiomas. Stereotact Funct Neurosurg 66(Suppl 1):129–133

    Article  PubMed  Google Scholar 

  23. Graves VB, Duff TA (1990) Intracranial arteriovenous malformations. Current imaging and treatment. Invest Radiol 25(8):952–960

    Article  PubMed  CAS  Google Scholar 

  24. Guidetti B, Delitala A (1980) Intracranial arteriovenous malformations conservative and surgical treatment. J Neurosurg 53(2):149–152

    PubMed  CAS  Google Scholar 

  25. Guo WY (1993) Radiological aspects of gamma knife radiosurgery for arteriovenous malformations and other non-tumoural disorders of the brain. Acta Radiol 388:1–34

    CAS  Google Scholar 

  26. Harris AE, Lee JY, Omalu B, Flickinger JC, Kondziolka D, Lunsford LD (2003) The effect of radiosurgery during management of aggressive meningiomas. Surg Neurol 60(4):298–305

    Article  PubMed  Google Scholar 

  27. Heros RC, Tu YK (1987) Is surgical therapy needed for unruptured arteriovenous malformations. Neurology 37(2):279–286

    PubMed  CAS  Google Scholar 

  28. Hudgins WR, Barker JL, Schwartz DE, Nichols TD (1996) Gamma Knife treatment of 100 consecutive meningiomas. Stereotact Funct Neurosurg 66(Suppl 1):121–128

    Article  PubMed  Google Scholar 

  29. Ide M, Yamamoto M, Hagiwara S, Tanaka N, Kawamura H (2004) Rapid regrowth of intracranial clear cell meningioma after craniotomy and gamma knife radiosurgery—case report. Neurol Med Chir (Tokyo) 44(6):321–325

    Article  Google Scholar 

  30. Inoue HK (2005) Low-dose radiosurgery for large vestibular schwannomas: long-term results of functional preservation. J Neurosurg 102:111–113

    PubMed  Google Scholar 

  31. Iwai Y, Yamanaka K, Ishiguro T (2003) Gamma knife radiosurgery for the treatment of cavernous sinus meningiomas. Neurosurgery 52(3):517–524

    Article  PubMed  Google Scholar 

  32. Iwai Y, Yamanaka K, Morikawa T (2004) Adjuvant gamma knife radiosurgery after meningioma resection. J Clin Neurosci 11(7):715–718

    Article  PubMed  Google Scholar 

  33. Iwai Y, Yamanaka K, Nakajima H, Yasui T, Kishi H (2000) Gamma knife radiosurgery for skull base meningiomas: the treatment results and patient satisfaction expressed in answers to a questionnaire. [No Shinkei Geka] 28(5):411–415

    CAS  Google Scholar 

  34. Iwai Y, Yamanaka K, Nakajima H (2001) The treatment of skull base meningiomas—combining surgery and radiosurgery. J Clin Neurosci 8(6):528–533

    Article  PubMed  CAS  Google Scholar 

  35. Iwai Y, Yamanaka K, Shiotani M, Uyama T (2003) Radiosurgery for acoustic neuromas: results of low-dose treatment. Neurosurgery 53(2):282–287

    Article  PubMed  Google Scholar 

  36. Iwai Y, Yamanaka K, Yasui T, Komiyama M, Nishikawa M, Nakajima H, Kishi H (1999) Gamma knife surgery for skull base meningiomas. The effectiveness of low-dose treatment. Surg Neurol 52(1):40–44

    Article  PubMed  CAS  Google Scholar 

  37. Kim CH, Kim DG, Paek SH, Chung HT, Choi YL, Chi JG (2004) Delayed bleeding after gamma knife surgery for meningioma. Acta Neurochir (Wien) 146(7):741–742

    Article  CAS  Google Scholar 

  38. Kim DG, Kim ChH, Chung HT, Paek SH, Jeong SS, Han DH, Jung HW (2005) Gamma knife surgery of superficially located meningioma. J Neurosurg 102:255–258

    Article  PubMed  Google Scholar 

  39. Kondziolka D, Flickinger JC, Perez B (1998) Judicious resection and/or radiosurgery for parasagittal meningiomas: outcomes from a multicenter review. Gamma Knife Meningioma Study Group. Neurosurgery 43(3):405–413

    Article  PubMed  CAS  Google Scholar 

  40. Kondziolka D, Levy EI, Niranjan A, Flickinger JC, Lunsford LD (1999) Long-term outcomes after meningioma radiosurgery: physician and patient perspectives. J Neurosurg 91(1):44–50

    PubMed  CAS  Google Scholar 

  41. Kondziolka D, Lunsford LD (1992) Radiosurgery of meningiomas. Neurosurgical Clinics of North America 3(1):219–230

    CAS  Google Scholar 

  42. Kondziolka D, Lunsford LD, Flickinger JC (1998) Gamma Knife brain surgery. In: Lunsford LD, Kondziolka D, Flickinger JC (eds) Stereotactic radiosurgery for meningioma. Karger, New York, pp 104–113

    Google Scholar 

  43. Korytko T, Radivoyevitch T, Colussi V, Wessels BW, Pillai K, Maciunas RJ, Einstein DB (2006) 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumours. Int J Radiat Oncol Biol Phys 64(2):419–424

    PubMed  Google Scholar 

  44. Kreil W, Luggin J, Fuchs I, Weigl V, Eustacchio S, Papaefthymiou G (2005) Long term experience of gamma knife radiosurgery for benign skull base meningiomas. J Neurol Neurosurg Psychiatry 76(10):1425–1430

    Article  PubMed  CAS  Google Scholar 

  45. Kwon Y, Kim JH, Lee DJ, Kim CJ, Lee JK, Kwun BD (1998) Gamma knife treatment of acoustic neurinoma. Stereotact Funct Neurosurg 70(Suppl 1):57–64

    Article  PubMed  Google Scholar 

  46. Lee JY, Niranjan A, McInerney J, Kondziolka D, Flickinger JC, Lunsford LD (2002) Stereotactic radiosurgery providing long-term tumour control of cavernous sinus meningiomas. J Neurosurg 97(1):65–72

    PubMed  Google Scholar 

  47. Levegrun S, Hof H, Essig M, Schlegel W, Debus J (2004) Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: correlation with dose distribution parameters. Int J Radiat Oncol Biol Phys 59(3):796–808

    PubMed  Google Scholar 

  48. Levegrun S, Hof H, Essig M, Schlegel W, Debus J (2004) Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: dose/volume–response relations. Strahlenther Onkol 180(12):758–767

    Article  PubMed  Google Scholar 

  49. Linskey ME, Davis SA, Ratanatharathorn V (2005) Relative roles of microsurgery and stereotactic radiosurgery for the treatment of patients with cranial meningiomas: a single-surgeon 4-year integrated experience with both modalities. J Neurosurg 102:59–70

    PubMed  Google Scholar 

  50. Linskey ME, Flickinger JC, Lunsford LD (1993) Cranial nerve length predicts the risk of delayed facialand trigeminal neuropathies after acoustic tumor stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 25(2):227–233

    PubMed  CAS  Google Scholar 

  51. Linskey ME, Lunsford LD, Flickinger JC, Kondziolka D (1992) Stereotactic radiosurgery for acoustic tumors. Neurosurg Clin N Am 3(1):191–205

    PubMed  CAS  Google Scholar 

  52. Liscak R, Simonova G, Vymazal J, Janouskova L, Vladyka V (1999) Gamma knife radiosurgery of meningiomas in the cavernous sinus region. Acta Neurochir (Wien) 141(5):473–480

    Article  CAS  Google Scholar 

  53. Liscak R, Vladyka V, Simonova G, Novotny J (1995) Radiosurgical treatment of meningioma with the Leksell gamma knife. Cas Lek Cesk 134(17):534–538

    PubMed  CAS  Google Scholar 

  54. Liscak R, Vladyka V, Simonova G, Vymazal J, Novotny J Jr (2005) Gamma knife surgery of brain cavernous hemangiomas. J Neurosurg 102:207–213

    PubMed  Google Scholar 

  55. Luessenhop AJ, Rosa L (1984) Cerebral arteriovenous malformations indications for and results of surgery, and the role of intravascular techniques. J Neurosurg 60(1):14–22

    PubMed  CAS  Google Scholar 

  56. Lunsford LD, Niranjan A, Flickinger JC, Maitz A, Kondziolka D (2005) Radiosurgery of vestibular schwannomas: summary of experience in 829 cases. J Neurosurg 102:195–199

    PubMed  Google Scholar 

  57. Maity A, Shu HK, Tan JE, Ruffer J, Sutton LN, Tochner Z, Lustig R (2004) Treatment of pediatric intracranial arteriovenous malformations with linear-accelerator-based stereotactic radiosurgery: the University of Pennsylvania experience. Pediatr Neurosurg 40(5):207–214

    Article  PubMed  Google Scholar 

  58. Majhail NS, Chander S, Mehta VS, Julka PK, Ganesh T, Rath GK (2001) Factors influencing early complications following Gamma Knife radiosurgery. A prospective study. Stereotact Funct Neurosurg 76(1):36–46

    Article  PubMed  CAS  Google Scholar 

  59. Metellus P, Regis J, Muracciole X, Fuentes S, Dufour H, Nanni I, Chinot O, Martin PM, Grisoli F (2005) Evaluation of fractionated radiotherapy and gamma knife radiosurgery in cavernous sinus meningiomas: treatment strategy. Neurosurgery 57(5):873–886

    Article  PubMed  Google Scholar 

  60. Michelsen WJ (1979) Natural history and pathophysiology of arteriovenous malformations. Clin Neurosurg 26:307–313

    PubMed  CAS  Google Scholar 

  61. Miyawaki L, Dowd C, Wara W, Goldsmith B, Albright N, Gutin P, Halbach V, Hieshima G, Higashida R, Lulu B, Pitts L, Schell M, Smith V, Weaver K, Wilson C, Larson D (1999) Five year results of LINAC radiosurgery for arteriovenous malformations: outcome for large AVMS. Int J Radiat Oncol Biol Phys 44(5):1089–1106

    PubMed  CAS  Google Scholar 

  62. Muthukumar N, Kondziolka D, Lunsford LD, Flickinger JC (1998) Stereotactic radiosurgery for tentorial meningiomas. Acta Neurochir (Wien) 140(4):315–320

    Article  CAS  Google Scholar 

  63. Muthukumar N, Kondziolka D, Lunsford LD, Flickinger JC (1999) Stereotactic radiosurgery for anterior foramen magnum meningiomas. Surg Neurol 51(3):268–273

    Article  PubMed  CAS  Google Scholar 

  64. Nakamura S, Hiyama H, Arai K, Nakaya K, Sato H, Hayashi M, Kawamata T, Izawa M, Takakura K (1996) Gamma Knife radiosurgery for meningiomas: four cases of radiation-induced edema. Stereotact Funct Neurosurg 66(Suppl 1):142–145

    Article  PubMed  Google Scholar 

  65. Nakaya K, Hayashi M, Nakamura S, Atsuchi S, Sato H, Ochial T, Yamamoto M, Izawa M, Hori T, Takakura K (1999) Low-dose radiosurgery for meningiomas. Stereotact Funct Neurosurg 72(Suppl 1):67–72

    Article  PubMed  Google Scholar 

  66. Nicolato A, Ferraresi P, Foroni R, Pasqualin A, Piovan E, Severi F, Masotto B, Gerosa M (1996) Gamma Knife radiosurgery in skull base meningiomas. Preliminary experience with 50 cases. Stereotact Funct Neurosurg 66(Suppl 1):112–120

    Article  PubMed  Google Scholar 

  67. Niranjan A, Lunsford LD, Flickinger JC, Maitz A, Kondziolka D (1999) Dose reduction improves hearing preservation rates after intracanalicular acoustic tumor radiosurgery. Neurosurgery 45(4):753–762

    Article  PubMed  CAS  Google Scholar 

  68. Noel G, Bollet MA, Noel S, Feuvret L, Boisserie G, Tep B, Delattre JY, Baillet F, Ambroise Valery C, Cornu P, Mazeron JJ (2005) Linac stereotactic radiosurgery: an effective and safe treatment for elderly patients with brain metastases. Int J Radiat Oncol Biol Phys 63(5):1555–1561

    Article  PubMed  Google Scholar 

  69. Noren G (1998) Long-term complications following gamma knife radiosurgery of vestibular schwannomas. Stereotact Funct Neurosurg 70(Suppl 1):65–73

    PubMed  Google Scholar 

  70. Nussbaum ES, Heros RC, Camarata PJ (1995) Surgical treatment of intracranial arteriovenous malformations with an analysis of cost-effectiveness. Clin Neurosurg 42:348–369

    PubMed  CAS  Google Scholar 

  71. Ondra SL, Troupp H, George ED, Schwab K (1991) The natural history of symptomatic arteriovenous malformations of the brain: a 24-year follow-up assessment. J Neurosurg 75(2):338–339

    Google Scholar 

  72. Pan DH, Guo WY, Chang YC, Chung WY, Shiau CY, Wang LW, Wu SM (1998) The effectiveness and factors related to treatment results of gamma knife radiosurgery for meningiomas. Stereotact Funct Neurosurg 70(Suppl 1):19–32

    Article  PubMed  Google Scholar 

  73. Pan DH, Guo WY, Chung WY, Shiau CY, Chang YC, Wang LW (2000) Gamma knife radiosurgery as a single treatment modality for large cerebral arteriovenous malformations. J Neurosurg 93(Suppl 3):113–119

    PubMed  Google Scholar 

  74. Pendl G, Schrottner O, Eustacchio S, Feichtinger K, Ganz J (1997) Stereotactic radiosurgery of skull base meningiomas. Minim Invasive Neurosurg 40(3):87–90

    Article  PubMed  CAS  Google Scholar 

  75. Pendl G, Schrottner O, Friehs GM, Feichtinger H (1995) Stereotactic radiosurgery of skull base meningiomas. Stereotact Funct Neurosurg 64(Suppl 1):11–18

    PubMed  Google Scholar 

  76. Petit JH, Hudes RS, Chen TT, Eisenberg HM, Simard JM, Chin LS (2001) Reduced-dose radiosurgery for vestibular schwannomas. Neurosurgery 49(6):1299–1306

    Article  PubMed  CAS  Google Scholar 

  77. Pollock BE, Stafford SL, Utter A, Giannini C, Schreiner SA (2003) Stereotactic radiosurgery provides equivalent tumour control to Simpson Grade 1 resection for patients with small-to medium-size meningiomas. Int J Radiat Oncol Biol Phys 55(4):1000–1005

    PubMed  Google Scholar 

  78. Pollock BE, Stafford SL (2005) Results of stereotactic radiosurgery for patients with imaging defined cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys 62(5):1427–1431

    PubMed  Google Scholar 

  79. Pollock BE (2003) Stereotactic radiosurgery for intracranial meningiomas: indications and results. Neurosurg Focus 14(5):e4

    Article  PubMed  Google Scholar 

  80. Regis J, Delsanti CH, Roche P, Soumare O, Dufour H, Porcheron D, Peragut JC, Thomassin JM, Pellet W (2002 ) Preservation of hearing function in the radiosurgical treatment of unilateral vestibular schwannomas. Preliminary results. Neurochirurgie 48(6):471–478

    PubMed  CAS  Google Scholar 

  81. Regis J, Metellus P, Hayashi M, Roussel P, Donnet A, Bille-Turc F (2006) Prospective controlled trial of gamma knife surgery for essential trigeminal neuralgia. J Neurosurg 104(6):913–924

    Article  PubMed  Google Scholar 

  82. Roche PH, Pellet W, Fuentes S, Thomassin JM, Regis J (2003) Gamma knife radiosurgical management of petroclival meningiomas results and indications. Acta Neurochir (Wien) 145(10):883–888

    Article  Google Scholar 

  83. Roche PH, Regis J, Dufour H, Fournier HD, Delsanti C, Pellet W, Grisoli F, Peragut JC (2000) Gamma knife radiosurgery in the management of cavernous sinus meningiomas. J Neurosurg 93(Suppl 3):68–73

    PubMed  Google Scholar 

  84. Shaw E, Kline R, Gillin M (1993) Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys 27:1231–1239

    PubMed  CAS  Google Scholar 

  85. Shaw E, Scott C, Souhami L, Dinapoli R, Bahary JP, Kline R, Wharam M, Schultz C, Davey P, Loeffler J, Del Rowe J, Marks L, Fisher B, Shin K (1996) Radiosurgery for the treatment of previously irradiated recurrent primary brain tumours and brain metastases: initial report of radiation therapy oncology group protocol (90-05). Int J Radiat Oncol Biol Phys 34(3):647–654

    PubMed  CAS  Google Scholar 

  86. Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumours and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys 47(2):291–298

    Article  PubMed  CAS  Google Scholar 

  87. Shin M, Kurita H, Sasaki T, Kawamoto S, Tago M, Kawahara N, Morita A, Ueki K, Kirino T (2001) Analysis of treatment outcome after stereotactic radiosurgery for cavernous sinus meningiomas. J Neurosurg 95(3):435–439

    PubMed  CAS  Google Scholar 

  88. Singh VP, Kansai S, Vaishya S, Julka PK, Mehta VS (2000) Early complications following gamma knife radiosurgery for intracranial meningiomas. J Neurosurg 93(Suppl 3):57–61

    PubMed  Google Scholar 

  89. Stafford SL, Pollock BE, Foote RL, Link MJ, Gorman DA, Schomberg PJ, Leavitt JA (2001) Meningioma radiosurgery: tumour control, outcomes, and complications among 190 consecutive patients. Neurosurgery 49(5):1029–1037

    Article  PubMed  CAS  Google Scholar 

  90. Steiner L (1992) Editor’s comments: radiosurgery in vascular malformations. In: Steiner L, Lindquist C, Forster D, Backlund E-O (eds) Radiosurgery, baseline and trends. Raven, New York, pp 229–233

    Google Scholar 

  91. Subach BR, Lunsford LD, Kondziolka D, Maitz AH, Flickinger JC (1998) Management of petroclival meningiomas by stereotactic radiosurgery. Neurosurgery 42(3):437–443

    Article  PubMed  CAS  Google Scholar 

  92. Tanaka T, Kobayashi T, Kida Y (1996) Growth control of cranial base meningiomas by stereotactic radiosurgery with a gamma knife unit. Neurol Med Chir (Tokyo) 36(1):7–10

    Article  CAS  Google Scholar 

  93. Varlotto JM, Flickinger JC, Niranjan A, Bhatnagar AK, Kondziolka D, Lunsford LD (2003) Analysis of tumour control and toxicity in patients who have survived at least one year after radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 57(2):452–464

    Article  PubMed  Google Scholar 

  94. Vermeulen S, Young R, Li F, Meier R, Raisis J, Klein S, Kohler E (1999) A comparison of single fraction radiosurgery tumour control and toxicity in the treatment of basal and nonbasal meningiomas. Stereotact Funct Neurosurg 72(Suppl 1):160–166

    Google Scholar 

  95. Vermeulen S, Young R, Posewitz A, Grimm P, Blasko J, Kohler E, Raisis J (1998) Stereotactic radiosurgery toxicity in the treatment of intracanalicular acoustic neuromas: the Seattle Northwest gamma knife experience. Stereotact Funct Neurosurg 70(Suppl 1):80–87

    Article  PubMed  Google Scholar 

  96. Voges J, Treuer H, Sturm V, Buchner C, Lehrke R, Kocher M, Staar S, Kuchta J, Muller RP (1996) Risk analysis of linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 36(5):1055–1063

    PubMed  CAS  Google Scholar 

  97. Wilkins RH (1985) Natural history of intracranial vascular malformations: a review. Neurosurgery 16(3):421–430

    Article  PubMed  CAS  Google Scholar 

  98. Yamamoto Y, Coffey RJ, Nichols DA, Shaw EG (1995) Interim report on the radiosurgical treatment of cerebral arteriovenous malformations. The influence of size, dose, time, and technical factors on obliteration rate. J Neurosurg 83(5):832–837

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Ganz.

Additional information

Comments

The authors studied the incidence of imaging-confirmed new symptoms (adverse radiation effects) in a series of patients who had Gamma Knife radiosurgery for a benign pathology. This included meningiomas, vestibular schwannomas and arteriovenous malformations. Minimum follow-up for each group was in excess of 24 months, which is adequate in a study of potential complications. The authors state in the abstract that “radiation-induced clinical trigeminal and facial nerve deficits with both vestibular schwannomas and meningiomas were always associated with increased T2 signal in the neighbouring brainstem parenchyma.” Some may find this difficult to understand but likely reflects the fact that imaging does not show effects related to cranial nerves. Such imaging effects to the brainstem are rare after vestibular schwannoma or meningioma radiosurgery at a margin dose of 12 Gy. Cranial neuropathy can occur from effects on cranial nerves and does not necessarily require changes in the brainstem. Certainly, brainstem changes can occur and lead to neurologic deficits, but this is not necessary. Since arteriovenous malformations typically are surrounded by brain parenchyma and not by cranial nerves, it makes sense that the dose–volume relationship for AVMs would be different.

It is important to note that the morbidity rate was low for meningiomas (2.6%) and vestibular schwannomas (6%). This is in line with reports from other centres. In contrast, they found post-radiosurgery imaging changes (long relaxation time MRI) in 60% of patients with arteriovenous malformations. In some, these may have been haemodynamic related to AVM obliteration and not an adverse occurrence. In these 64 patients, only nine were symptomatic. In seven of the patients, the deficits were temporary.

I concur with the authors that there is a clear dose–response relationship for disorders of brain parenchyma. For extraaxial lesions more intimately associated with cranial nerves, these relationships are more complex. For example, hearing may be related to the cochlear dose rather than brainstem dose. Much work has been on AVM dose prescription, and a number of centres are conducting research into better understanding the effects on tumours near cranial nerves.

Douglas Kondziolka

Pittsburgh, Pennsylvania

The author compares three groups of patients. In the so-called low-dose group, 271 meningiomas and 107 vestibular schwannomas were treated with 12 Gy (over 90% cover, conformity index 1.25 or better). In these patients, the dose never was reduced because of tumour volume (volume range for meningiomas, 0.3 to 43.2 cm3; for schwannomas, 0.07 to 17.8 cm3). The “high-dose group” consisted of 132 patients with arteriovenous malformations (volume range 0.3 to 19 cm3). In this group, the prescription dose was aimed at 25 Gy but had to be reduced in 33 patients (range 14 to 25 Gy).

Evaluating the follow-up data, the author shows that target volume was not a determinant of adverse radiation effects in the meningioma and in the schwannoma group (low-dose group). On the other hand, in the group of patients with arteriovenous malformations, there was a significant relationship between volume of the lesion and the occurrence of adverse effects.

This paper is of importance because it forms a systematic basis for a multitude of case reports describing Gamma Knife treatment success in large tumours. It clearly shows that at low doses, even large lesions can be treated safely. Further evaluation should clarify the threshold dose and volume at which adverse effects start to rise in incidence significantly.

Michael Mokry

University of Graz

Ganz et al are providing us with an interesting contribution about the impact of volume on risk after radiosurgery depending on the reference dose used. This paper have the merrit to propose to support by data a concept quite communly accepted : the higher is the reference dose the more important is the impact of volume on risk prediction. Pionneers like Flickinger and Kjelberg have well demonstrated that in radiosurgery both marginal dose and treatment volume must be taken into account for risk prediction (1). Flickinger dose volume effect integrated formula demonstrates that the larger is the volume the lower is the dose threshold for risk and the higher the prescription dose is the lower is the threshold for acceptable volume.

However the role of other parameters must not be underestimated. The quality of the doseplanning in term of conformity and selectivity is also of major importance. Niranjan and Flickinger are demonstrating how radiosurgery with high selectivity reduces complications for the same treatment dose (2). Theoritical dose response curves for complication rate with different treatment volume are shown by these authors to be shifted « on the safe side » when more normal tissue surrounding the target is spared. Readers must keep in mind that the present series is coming from a neurosurgeon with one of the longer experience in this field of radiosurgery. Other potential risk factors are the nature of the lesion, the involvement of normal brain in the mass of the lesion, the location and the individual sensitivity to radiation...

In the neurosurgical community discussions related to the role of radiosurgery are frequently made difficult by the overall underestimation of basic knowledge and specially basic radiobiological principles of radiosurgery. Thus, any contribution participating to a better understanding of radiosurgery is of importance.

Jean Regis

La Timone University Hospital, Marseilles

Bibliographie

1. Flickinger JC, Lunsford LD, Kondziolka D: Dose prescription and dose-volume effects in radiosurgery. Neurosurgery Clinics of North America 3:51-59, 1992.

2. Niranjan A, Flickinger JC: Radiobiology, principle and technique of radiosurgery. Prog Neurol Surg 21:32-42, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganz, J.C., Reda, W.A. & Abdelkarim, K. Adverse radiation effects after Gamma Knife Surgery in relation to dose and volume. Acta Neurochir (Wien) 151, 9–19 (2009). https://doi.org/10.1007/s00701-008-0174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-008-0174-4

Keywords

Navigation