Skip to main content
Log in

Patterns of pollen flow in monomorphic enantiostylous species: the importance of floral morphology and pollinators’ size

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Enantiostyly is a floral polymorphism consisting in the presence of two floral morphs that differ in the deflection of the style to the right or left in the populations. Monomorphic enantiostyly consists in plants showing both morphs within an individual and is thought to promote pollen transference between morphs, reduce levels of self-pollination and geitonogamy and avoid damage to floral parts during pollinator’s visit. In this study, we examined the function of this floral polymorphism in a group of plants with non-typical enantiostylous characteristics, the family Vochysiaceae. In particular, we evaluated how floral morphology (both sexual organ separation and the match between complementary sexual organs in the morphs) is related to pollen deposition on the pollinators’ body and to patterns of pollen flow among individuals. For this, we used floral morphometrics, insect captures and fluorescent powder dyes. We confirmed that monomorphic enantiostyly increased pollen transference between morphs compared to non-enantiostyly. Moreover, pollen flow occurred only between flowers of opposite morph. We also observed that pollen deposition on the insect’s body depended on their body shape rather than floral morphology. In fact, an intertegular distance slightly larger than the anther–stigma distance in the flowers increased pollen transference because anthers filaments and stigmas are flexible, which facilitated pollen brushing on insects’ body when approaching the flowers. Since the species are self-incompatible, we further discuss the role of mirror flowers in the reduction of geitonogamy and inbreeding depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida NM, Castro CC, Leite AVL, Novo RR, Machado IC (2013a) Enantiostyly in Chamaecrista ramosa (Fabaceae Caesalpinioideae): floral morphology, pollen transfer dynamics and breeding system. Pl Biol 15:369–375. https://doi.org/10.1111/j.1438-8677.2012.00651.x

    Article  Google Scholar 

  • Almeida NM, Castro CC, Leite AVL, Novo RR, Machado IC (2013b) Floral polymorphism in Chamaecrista flexuosa (Fabaceae-Caesalpinioideae): a possible case of atypical enantiostyly? Ann Bot (Oxford) 112:1117–1123. https://doi.org/10.1093/aob/mct188

    Article  Google Scholar 

  • Almeida NM, Bezerra TT, Oliveira CRS, Novo RR, Siqueira-Filho JA, Oliveira PE, Castro CC (2015a) Breeding systems of enantiostylous Cassiinae species (Fabaceae, Caesalpinioideae). Flora 215:9–15. https://doi.org/10.1016/j.flora.2015.06.003

    Article  Google Scholar 

  • Almeida NM, Cotarelli VM, Souza DP, Novo RR, Siqueira-Filho JA, Oliveira PE, Castro CC (2015b) Enantiostylous types of Cassiinae species (Fabaceae-Caesalpinioideae). Pl Biol 17:740–745. https://doi.org/10.1111/plb.12283

    Article  CAS  Google Scholar 

  • Andena SR, Santos EF, Noll FB (2012) Taxonomic diversity, niche width and similarity in the use of plant resources by bees (Hymenoptera: Anthophila) in a cerrado area. J Nat Hist 46:1663–1687. https://doi.org/10.1080/00222933.2012.681317

    Article  Google Scholar 

  • Arceo-Gómez G, Martínez ML, Parra-Tabla V, García-Franco JG (2010) Anther and stigma morphology in mirror-image flowers of Chamaecrista chamaecristoides (Fabaceae): implications for buzz pollination. Pl Biol 13:19–24. https://doi.org/10.1111/j.1438-8677.2010.00324.x

    Article  Google Scholar 

  • Arceo-Gómez G, Martínez ML, Parra-Tabla V, García-Franco JG (2012) Floral and reproductive biology of the Mexican endemic Chamaecrista chamaecristoides (Fabaceae). J Torrey Bot Soc 139:260–269. https://doi.org/10.3159/TORREY-D-12-00005.1

    Article  Google Scholar 

  • Assunção VA, Casagrande JC, Sartori AALB (2014) Floristics and reproductive phenology of trees and bushes in Central West Brazil. Anais Acad Brasil Ci 86:785–799. https://doi.org/10.1590/0001-3765201420130042

    Article  Google Scholar 

  • Aveiro SMG (1997) Biologia da reprodução e crescimento inicial de Qualea cordata Spreng (Vochysiaceae), uma espécie arbórea do Cerrado. PhD Thesis, Universidade Estadual de Campinas, Campinas

  • Bahadur B, Chaturvedi A, Swamy NR (1990) SEM studies of pollen in relation to enantiostyly and heterantery in Cassia (Caesalpinaceae). J Palynol 91:7–22

    Google Scholar 

  • Barbosa AAA (1983) Aspectos da ecologia reprodutiva de três espécies de Qualea (Vochysiaceae) num Cerrado de Brasília. PhD Thesis, Universidade de Brasília, Departamento de Botânica, Brasília

  • Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284. https://doi.org/10.1038/nrg776

    Article  CAS  PubMed  Google Scholar 

  • Barrett SCH (2003) Mating strategies in flowering plants: the out crossing–selfing paradigm and beyond. Philos Trans Roy Soc B 358:991–1004. https://doi.org/10.1098/rstb.2003.1301

    Article  Google Scholar 

  • Barrett SCH, Jesson LK, Baker AM (2000) The evolution and function of stylar polymorphisms in flowering plants. Ann Bot (Oxford) 85:253–265. https://doi.org/10.1006/anbo.1999.1067

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Borges MP (2011) Diversidade florística e funcional em formações florestais ribeirinhas no triângulo mineiro, MG, Brazil. PhD Thesis, Universidade de Uberlândia, Departamento de Botânica, Uberlândia

  • Buchmann SL (1983) Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. van Nostrand Reinhold Company Inc., New York, pp 73–113

    Google Scholar 

  • Buchmann SL, Hurley JP (1978) Biophysical model for buzz pollination in Angiosperms. J Theor Biol 72:639–657

    Article  CAS  Google Scholar 

  • Carneiro MS (2013) Efeito da estrutura da paisagem sobre a riqueza e diversidade de árvores em grupos funcionais reprodutivos. PhD Thesis, Universidade de Alfenas, Departamento de Ecologia e Tecnologia Ambiental, Alfenas

  • Custódio LN, Carmo-Oliveira R, Mendes-Rodrigues C, Oliveira PE (2014) Pre-dispersal seed predation and abortion in species of Callisthene and Qualea (Vochysiaceae) in a Neotropical savanna. Acta Bot Brasil 28:309–320. https://doi.org/10.1590/0102-33062014abb3064

    Article  Google Scholar 

  • Dulberger R, Orndulf R (1980) Floral morphology and reproductive biology of four species of Cyanella (Tecophilaceae). New Phytol 86:45–56. https://doi.org/10.1111/j.1469-8137.1980.tb00778.x

    Article  Google Scholar 

  • Dulmen A (2001) Pollination and phenology of flowers in the canopy of two contrasting rain forest types in Amazonia, Colombia. Pl Ecol 153:73–85. https://doi.org/10.1023/A:1017577305193

    Article  Google Scholar 

  • Fenster CB (1995) Mirror-image flowers and their effect on outcrossing rate in Chamaecrista fasciculata (Leguminosae). Amer J Bot 82:46–50. https://doi.org/10.2307/2445785

    Article  Google Scholar 

  • Frasnelli E (2013) Brain and behavioral lateralization in invertebrates. Frontiers Psychol 4:939. https://doi.org/10.3389/fpsyg.2013.00939

    Article  Google Scholar 

  • Gomulkiewicz R, Thompson JN, Holt RD, Nuismer SL, Hochberg ME (2000) Hot spots, cold spots, and the geographic mosaic theory of coevolution. Amer Naturalists 156:156–174

    Article  Google Scholar 

  • Graham SW, Barrett SCH (1995) Phylogenetic systematics of Pontederiales. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotiledons: systematic and evolution. Royal Botanic Gardens, Kew, pp 415–441

    Google Scholar 

  • Jesson LK, Barrett SCH (2002a) Enantiostyly in Wachendorfia (Haemodoraceae): the influence of reproductive systems on the maintenance of the polymorphism. Amer J Bot 89:253–262

    Article  Google Scholar 

  • Jesson LK, Barrett SCH (2002b) The genetics of mirror-image flowers. Proc Biol Sci 269:1835–1839. https://doi.org/10.1098/rspb.2002.2068

    Article  PubMed  PubMed Central  Google Scholar 

  • Jesson LK, Barrett SCH (2002c) Solving the puzzle of mirror-image flowers. Nature 417:707. https://doi.org/10.1038/417707a

    Article  CAS  PubMed  Google Scholar 

  • Jesson LK, Barrett SCH (2003) The comparative biology of mirror-image flowers. Int J Pl Sci 164:237–249

    Article  Google Scholar 

  • Jesson LK, Barrett SCH (2005) Experimental tests of the function of mirror-image flowers. Biol J Linn Soc 85:167–179. https://doi.org/10.1111/j.1095-8312.2005.00480.x

    Article  Google Scholar 

  • Jesson LK, Kang J, Wagner SL, Barrett SCH, Dengler NG (2003) The development of enantiostyly. Amer J Bot 90:183–195. https://doi.org/10.3732/ajb.90.2.183

    Article  Google Scholar 

  • King MJ (1993) Buzz foraging mechanism in bumble bees. J Apic Res 32:41–49

    Article  Google Scholar 

  • King MJ, Buchmann SL (2003) Floral sonication by bees: mesosomal vibration by Bombus and Xylocopa, but not Apis (Hymenoptera: Apidae), ejects pollen from poricidal anthers. J Kansas Entomol Soc 76:295–305

    Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2017) Lmer TestPackage: tests in linear mixed effects models. J Stat Softw 82:1–26. https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  • Larson BM, Barrett SCH (1999) The ecology of pollen limitation in buzz-pollinated Rhexia virginica (Melastomataceae). J Ecol 87:371–381. https://doi.org/10.1046/j.1365-2745.1999.00362.x

    Article  Google Scholar 

  • Macior LW (1964) Experimental study of floral ecology of Dodecatheon meadia. Amer J Bot 51:96–108. https://doi.org/10.2307/2440069

    Article  Google Scholar 

  • Minnaar C, Anderson B, de Jager ML, Karron JD (2019) Plant-pollinator interactions along the pathway to paternity. Ann Bot (Oxford) 123:225–245. https://doi.org/10.1093/aob/mcy167

    Article  Google Scholar 

  • Mora-Carrera E, Castañeda-Zárate M, Fornoni J, Boege K, Domínguez CA (2019) On the adaptive value of monomorphic versus dimorphic enantiostyly in Solanum rostratum. Ann Bot (Oxford) 123:205–212. https://doi.org/10.1093/aob/mcy162

    Article  CAS  Google Scholar 

  • Morais JM, Consolaro HN, Bergamini LL, Ferrero V (2020) Reproductive biology and pollinators in two enantiostylous Qualea species (Vochysiaceae) in the Brazilian Cerrado. Pl Biol. https://doi.org/10.1111/plb.13091

    Article  Google Scholar 

  • Oliveira PE (1998) Reproductive biology, evolution and taxonomy of the Vochysiaceae in the Central Brazil. In: Owens SJ, Rudall PJ (eds) Reproductive biology in systematics, conservation and economic botany. Royal Botanic Gardens, Kew, pp 381–393

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/

  • Rodríguez L, Sanoja E (2008) Fenología, biología floral de polinización de especies de la família Vochysiaceaeenla Guayana Venezolana. Acta Bot Venez 31:331–366

    Google Scholar 

  • Santos ML (1997) Biologia floral de duas espécies de Vochysiaceae em um Cerrado sobre afloramento basáltico em Araguari, MG. PhD Thesis, Universidade de Brasília, Departamento de Botânica, Brasília

  • Shimizu GH (2016) Phylogenetic, taxonomic and nomenclatural studies in Vochysiaceae and synopsis of Vochysia in Brazil. PhD Thesis, Universidade de Campinas, Instituto de Biologia, Campinas

  • Soares SMNA, Kaehler TG, Araujo RB, Falconer D, Silva DP, Monteiro VM (2012) Biologia Floral, enantiostilia, sistema reprodutivo e potenciais polinizadores de Callisthene minor Mart. (Vochysiaceae), Chapada dos Veadeiros—Brazil. Biol Ecol Polinização 3:89–97

    Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chigaco Press, Chigaco

    Book  Google Scholar 

  • Vallejo-Marín M, Silva EM, Sargent RD, Barrett SCH (2010) Trait correlates and functional significance of heteranthery in flowering plants. New Phytologist 188:418–425

    Article  Google Scholar 

  • Vallejo-Marín M, Walker C, Friston-Reilly P, Solís-Montero L, Igic B (2014) Recurrent modification of floral morphology in heterantherous Solanum reveals a parallel shift in reproductive strategy. Philos Trans Roy Soc B 369:20130256. https://doi.org/10.1098/rstb.2013.0256

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Westerkamp C (2004) Ricochet pollination in Cassias and how bees explain enantiostyly. Preliminary communication. In: Freitas BM, Pereira JOP (eds) Solitary bees: conservation, rearing and management for pollination. MMA, Fortaleza

    Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We thank Dr. Antônio José Camilo de Aguiar for helping in the identification of insects. We are also grateful to the IBGE and the Linda Serra dos Topázios Reserve for the authorization to collect in these areas. This study was supported by the Percy Sladen Memorial Fund through the 2016 call. The Portuguese Foundation for Science and Technology (FCT) funded the work of VF (SFRH/BPD/108707/2015), and the CAPES supported the work of Joicy M. Moráis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Ferrero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Kester Bull-Hereñu.

Electronic supplementary material

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Measures taken in the flowers of Qualea parviflora and Q. multiflora (in the photograph Q. parviflora). White horizontal traces correspond to the anther–floral axis distance, stigma–floral axis and anther–stigma. Black vertical dashed line represents the floral axis (sagittal plane).

Online Resource 2. Examples of Qualea parviflora flowers with fluorescent powder placed on the anthers. a Right flower with green fluorescent powder on anther; b left flower with pink fluorescent powder on anther; c flower with reproductive floral pieces attached simulating a non-enantiostylous condition with blue fluorescent powder; and d flowers simulating the non-enantiostylous condition without fluorescent powder (non-enantiostylous receptor).

Online Resource 3. Mean and standard deviation of anther–floral distance, stigma–floral distance and anther–stigma distance in populations of Qualea parviflora and Q. multiflora.

Online Resource 4. Number of pollen grains deposited in different parts (abdomen, head and lateral) of the bees’ body in aQualea parviflora; bQ. multiflora.

Online Resource 5. Pollen deposition on the body of floral visitors of Qualea parviflora and Q. multiflora, separated by groups of floral visitors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morais, J.M., Consolaro, H.N., Bergamini, L.L. et al. Patterns of pollen flow in monomorphic enantiostylous species: the importance of floral morphology and pollinators’ size. Plant Syst Evol 306, 22 (2020). https://doi.org/10.1007/s00606-020-01627-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00606-020-01627-1

Keywords

Navigation