Skip to main content
Log in

Influence of sexual dimorphism and dichromatism on reproductive success in a rare native cactus

  • Original Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Identifying plant sexual dimorphic traits is critical in advancing our knowledge on plant–pollinator interactions. For example, dimorphism in floral colors, or sexual dichromatism, is a crucial mediator of pollinator choice on foraging decisions. We studied Cylindropuntia wolfii, a model system, with diverse flower colors and a functionally dioecious sexual system. However, evidence suggests that sexual reproduction is limited in this species as it has a low seed set especially in naturally pollinated fruits. Thus, it is critical to this native species’ conservation to investigate its relationship with pollinators. Our goals were to: (a) investigate the sexual dimorphism including the sexual dichromatism in the flowers of the cactus, and (b) determine whether sexually dimorphic traits affect the pollinator attraction of both the sexes. We measured several quantitative and qualitative traits and compared them between male and female flowers. Then we recorded the pollinator visitation rate in nature for both sexes and tracked pollinator color preference using fluorescent dyes as pollen analogues. Our study showed that male flowers of C. wolfii are bigger and brighter, and they attract more potential pollinators than females, supporting the hypothesis that sexual dimorphism influences pollinator visitation preference. Fluorescence dichromatism, in which female flowers’ anthers fluoresce more than male flower anthers suggest this could be female flowers’ strategy to compensate for their dark colors and small size. The results from this study showed that C. wolfii exhibits sexual dichromatism and fluorescence dichromatism, which is a novel finding in plant research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Acharya RS, Burke JM, Leslie T, Loftin K, Joshi NK (2022) Wild bees respond differently to sampling traps with vanes of different colors and light reflectivity in a livestock pasture ecosystem. Sci Rep 12(1):1–1

    Article  Google Scholar 

  • Ancillotto L, Vignoli L, Martino J, Paoletti C, Romano A, Bruni G (2022) Sexual dichromatism and throat display in spectacled salamanders: a role in visual communication? J Zool 318(2):75–83

    Article  Google Scholar 

  • Araki S, Le NT, Koizumi K, Villar-Briones A, Nonomura KI, Endo M, Inoue H, Saze H, Komiya R (2020) miR2118-dependent U-rich phasiRNA production in rice anther wall development. Nat Commun 11(1):3115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashman T-L (2009) Sniffing out patterns of sexual dimorphism in floral scent. Funct Ecol 23:852–862

    Article  Google Scholar 

  • Ashman DLF, T-L, (2006) Trait selection in flowering plants: how does sexual selection contribute? Integr Comp Biol 46:465–472

    Article  PubMed  Google Scholar 

  • Badyaev AV, Hill GE (2003) Avian sexual dichromatism in relation to phylogeny and ecology. Annu Rev Ecol Evol Syst 34:27–49

    Article  Google Scholar 

  • Barbot E, Dufaÿ M, Tonnabel J, Godé C, De Cauwer I (2022) On the function of flower number: disentangling fertility from pollinator-mediated selection. Proceed R Soc B 289(1987):20221987

    Article  Google Scholar 

  • Barbot E, Dufaÿ M, De Cauwer I (2023) Sex-specific selection patterns in a dioecious insect-pollinated plant. Evolution 77(7):1578–1590

    Article  PubMed  Google Scholar 

  • Barreira AS, Lagorio MG, Lijtmaer DA, Lougheed SC, Tubaro PL (2012) Fluorescent and ultraviolet sexual dichromatism in the blue-winged parrotlet. J Zool 288(2):135–142

    Article  Google Scholar 

  • Barrett SC, Hough J (2013) Sexual dimorphism in flowering plants. J Exp Bot 64(1):67–82

    Article  CAS  PubMed  Google Scholar 

  • Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2(3):349–368

    Article  CAS  PubMed  Google Scholar 

  • Bawa KS, Opler PA (1975) Dioecism in tropical trees. Evolution 29:167–179

    Article  CAS  PubMed  Google Scholar 

  • Bell G (1985) On the function of flowers. Proceed R Soc London Ser B Biol Sci 224(1235):223–265

    Google Scholar 

  • Brock MT, Lucas LK, Anderson NA, Rubin MJ, Markelz RJ, Covington MF, Devisetty UK, Chapple C, Maloof JN, Weinig C (2016) Genetic architecture, biochemical underpinnings and ecological impact of floral UV patterning. Mol Ecol 25:1122–1140

    Article  CAS  PubMed  Google Scholar 

  • California Native Plant Society, Rare Plant Program (1968 onward continuously updated) Inventory of rare and endangered plants of California (online edition, v8–03 0.39). Website http://www.rareplants.cnps.org. Accessed 8 Mar 2022

  • Callejas-Chavero A, Vargas-Mendoza CF, Gómez-Hinostrosa C, Arriola-Padilla VJ, Cornejo-Romero A (2021) Breeding system in a population of the globose cactus Mammillaria magnimamma at Valle del Mezquital. Mexico Bot Sci 99(2):229–241

    Article  Google Scholar 

  • Castro AJ, Rejon JD, Fendri M, Zafra A, Jimenez Lopez JC, Rodriguez Garcia ML, Alche JD (2010) Taxonomical discrimination of pollen grains by using confocal laser scanning microscopy (CLSM) imaging of autofluorescence. In: Mendez A, Diaz J (eds) Microscopy: science, technology, applications and education. Formatex, Spain, pp 607–613

    Google Scholar 

  • Chittka L (1992) The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A 170:533–543

    Article  Google Scholar 

  • Chittka L (1997) Bee color vision is optimal for coding flower color, but flower colors are not optimal for being coded – why? Israel J Plant Sci 45:115–127

    Article  Google Scholar 

  • Chittka L, Waser NM (1997) Why red flowers are not invisible to bees. Israel J Plant Sci 45(2–3):169–183

    Article  Google Scholar 

  • Correns C (1928) Bestimmung, Vererbung und Verteilung des Geschlechtes bei den höheren Pflanzen.. In: Baur E Hartmann M, eds. Handbuch der Vererbungseissenschaft, pp 1–128

  • Cronk Q, Müller NA (2020) Default sex and single gene sex determination in dioecious plants. Front Plant Sci 11:1162

    Article  PubMed  PubMed Central  Google Scholar 

  • Dafni A (1984) Mimicry and deception in pollination. Annu Rev Ecol Syst 15:259–278

    Article  Google Scholar 

  • Dafni A, Bernhardt P, Shmida A, Ivri Y, Greenbaum S, O’Toole C, Losito L (1990) Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Israel J Plant Sci 39(1–2):81–92

    Google Scholar 

  • Darwin C (1851) A Monograph on the Sub-class Cirripedia: The Lepadidae, or, Pedunculated cirripedes (Vol. 1). Ray Society

  • Delph LF, Herlihy CR (2012) Sexual, fecundity, and viability selection on flower size and number in a sexually dimorphic plant. Evolution 66(4):1154–1166

    Article  PubMed  Google Scholar 

  • Delph LF, Galloway LF, Stanton ML (1996) Sexual dimorphism in flower size. Am Nat 148:299–320

    Article  Google Scholar 

  • Delph LF, Gehring JL, Arntz AM, Levri M, Frey FM (2005) Genetic correlations with floral display lead to sexual dimorphism in the cost of reproduction. Am Nat 166:31–41

    Article  Google Scholar 

  • Díaz L, Cocucci AA (2003) Functional gynodioecy in Opuntia quimilo (Cactaceae), a tree cactus pollinated by bees and hummingbirds. Plant Biol 5:531–539

    Article  Google Scholar 

  • Dötterl S, Glück U, Jürgens A, Woodring J, Aas G (2014) Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea. PLoS ONE 9:e93421

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudash MR, Hassler C, Stevens PM, Fenster CB (2011) Experimental floral and inflorescence trait manipulations affect pollinator preference and function in a hummingbird-pollinated plant. Am J Bot 98(2):275–282

    Article  PubMed  Google Scholar 

  • Eckhart VM (1991) The effects of floral display on pollinator visitation vary among populations of Phacelia linearis (Hydrophyllaceae). Evol Ecol 5(4):370–384

    Article  Google Scholar 

  • Fenster CB, Dudash MR, Hassler CL (1996) Fluorescent dye particles are good pollen analogs for hummingbird-pollinated Silene virginica(Caryophyllaceae). Can J Bot 74(2):189–193

    Article  Google Scholar 

  • Flores-Rentería L, Orozco-Arroyo G, Cruz-García F, García-Campusano F, Alfaro I, Vázquez-Santana S (2013) Programmed cell death promotes male sterility in the functional dioecious Opuntia stenopetala (Cactaceae). Ann Bot 112:789–800

    Article  PubMed  PubMed Central  Google Scholar 

  • Gandía-Herrero F, García-Carmona F, Escribano J (2005) Floral fluorescence effect. Nature 437:334

    Article  PubMed  Google Scholar 

  • García-Plazaola JI, Fernández-Marín B, Duke SO, Hernández A, López-Arbeloa F, Becerrila JM (2015) Autofluorescence: biological functions and technical applications. Plant Sci 236:136–145

    Article  PubMed  Google Scholar 

  • Glaettli M, Barrett SC (2008) Pollinator responses to variation in floral display and flower size in dioecious Sagittaria latifolia (Alismataceae). New Phytol 179(4):1193–1201

    Article  PubMed  Google Scholar 

  • Goldblatt P, Bernhardt P, Manning JC (1998) Pollination of petaloid geophytes by monkey beetles (Scarabaeidae: Rutelinae: Hopliini) in Southern Africa. Ann Mo Bot Gard 85(2):215–230

    Article  Google Scholar 

  • Hempel de Ibarra N, Vorobyev M (2009) Flower patterns are adapted for detection by bees. J Comp Physiol A 195(3):319–323

    Article  Google Scholar 

  • Hernández-Cruz R, Barrón-Pacheco F, Sánchez D, Arias S, Vázquez-Santana S (2018) Functional dioecy in Echinocereus: ontogenetic patterns, programmed cell death and evolutionary significance. Int J Plant Sci 179:257–274

    Article  Google Scholar 

  • Iriel A, Lagorio MG (2010) Is the flower fluorescence relevant in biocommunication? Naturwissenschaften 97:915–924

    Article  CAS  PubMed  Google Scholar 

  • Joseph N, Siril EA (2013) Floral color polymorphism and reproductive success in annatto (Bixa orellana L.). Trop Plant Biol 6(4):217–227

    Article  Google Scholar 

  • Kevan P, Giurfa M, Chittka L (1996) Why are there so many and so few white flowers? Trends Plant Sci 1(8):252

    Article  Google Scholar 

  • Klomberg Y, DywouKouede R, Bartoš M, Mertens JE, Tropek R, Fokam EB, Janeček Š (2019) The role of ultraviolet reflectance and pattern in the pollination system of Hypoxis camerooniana (Hypoxidaceae). AoB Plants 11(5):057

    Article  Google Scholar 

  • Kodric-Brown A (1998) Sexual dichromatism and temporary color changes in the reproduction of fishes. Am Zool 31:70–81

    Article  Google Scholar 

  • Kwok A, Dorken ME (2022) Sexual selection on male but not female function in monoecious and dioecious populations of broadleaf arrowhead (Sagittaria latifolia). Proc R Soc B 289(1986):20220919

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagorio MG, Cordon GB, Iriel A (2015) Reviewing the relevance of fluorescence in biological systems. Photochem Photobiol Sci 14:1538–1559

    Article  CAS  PubMed  Google Scholar 

  • Lázaro A, Jakobsson A, Totland Ø (2013) How do pollinator visitation rate and seed set relate to species’ floral traits and community context? Oecologia 173(3):881–893

    Article  PubMed  Google Scholar 

  • Lloyd DG, Webb CJ (1977) Secondary sex characters in plants. Bot Rev 43:177–216

    Article  Google Scholar 

  • Lunau K, Konzmann S, Winter L, Kamphausen V, Ren ZX (2017) Pollen and stamen mimicry: the alpine flora as a case study. Arthropod-Plant Interact 11:427–447

    Article  Google Scholar 

  • Mayer SS, Charlesworth D (1991) Cryptic dioecy in flowering plants. Trends Ecol Evol 6:320–325

    Article  CAS  PubMed  Google Scholar 

  • McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9(12):1351–1365

    Article  PubMed  Google Scholar 

  • McCamy CS, Marcus H, Davidson JG (1976) A color-rendition chart. J Appl Photogr Eng 2(3):95–99

    Google Scholar 

  • Moore JC, Pannell JR (2011) Sexual selection in plants. Curr Biol 21(5):R176–R182

    Article  CAS  PubMed  Google Scholar 

  • Moquet L, Jacquemart AL, Dufay M (2022) De Cauwer I (2022) Effects of sexual dimorphism on pollinator behavior in a dioecious species. Oikos 3:e08662

    Article  Google Scholar 

  • Mori S, Fukui H, Oishi M, Sakuma M, Kawakami M, Tsukioka J, Goto K, Hirai N (2018) Biocommunication between plants and pollinating insects through fluorescence of pollen and anthers. J Chem Ecol 44(6):591–600

    Article  CAS  PubMed  Google Scholar 

  • Nakashima H, Horner HT, Palmer RG (1984) Histological features of anthers from normal and ms3 mutant soybean 1. Crop Sci 24(4):735–739

    Article  Google Scholar 

  • Olsson M, Stuart-Fox D, Ballen C (2013) Genetics and evolution of colour patterns in reptiles. Semin Cell Dev Biol 24:6–7

    Article  Google Scholar 

  • Ômura H, Honda K (2005) Priority of color over scent during flower visitation by adult Vanessa indica butterflies. Oecologia 142:588–596

    Article  Google Scholar 

  • Orozco-Arroyo G, Vázquez-Santana S, Camacho A, Dubrovsky JG, Cruz-García F (2012) Inception of maleness: auxin contribution to flower masculinization in the dioecious cactus Opuntia stenopetala. Planta 236:225–238

    Article  CAS  PubMed  Google Scholar 

  • Parachnowitsch AL, Kessler A (2010) Pollinators exert natural selection on flower size and floral display in Penstemon digitalis. New Phytol 188:393–402

    Article  PubMed  Google Scholar 

  • Paterno GB, Silveira CL, Kollmann J, Westoby M, Fonseca CR (2020) The maleness of larger angiosperm flowers. Proc Natl Acad Sci 117(20):10921–10926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Primack RB (1985) Longevity of individual flowers. Annu Rev Ecol Syst 16(1):15–37

    Article  Google Scholar 

  • Rabska M, Giertych MJ, Nowak K, Pers-Kamczyc E, Iszkuło G (2022) Consequences of the reproductive effort of dioecious Taxus baccata L. females in a generative bud removal experiment—important role of nitrogen in female reproduction. Int J Mol Sci 23(22):14225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rae JM, Vamosi JC (2013) Ultraviolet reflectance mediates pollinator visitation in Mimulus guttatus. Plant Species Biol 28:177–184

    Article  Google Scholar 

  • Ramadoss N, Orduño-Baez A, Portillo C, Steele S, Rebman J, Flores-Rentería L (2022) Unraveling the development behind unisexual flowers in Cylindropuntia wolfii (Cactaceae). BMC Plant Biol 22(1):1–4

    Article  Google Scholar 

  • Rao S, Ostroverkhova O (2015) Visual outdoor response of multiple wild bee species: highly selective stimulation of a single photoreceptor type by sunlight-induced fluorescence. J Comp Physiol A 201:705–716

    Article  CAS  Google Scholar 

  • Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101(10):1588–1596

    Article  PubMed  Google Scholar 

  • Reverté S, Retana J, Gómez JM, Bosch J (2016) Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators. Ann Bot 118(2):249–257

    Article  PubMed  PubMed Central  Google Scholar 

  • Sletvold N, Trunschke J, Smit M, Verbeek J, Ågren J (2016) Strong pollinator-mediated selection for increased flower brightness and contrast in a deceptive orchid. Evolution 70(3):716–724

    Article  PubMed  Google Scholar 

  • Stanton ML (1994) Male-male competition during pollination in plant populations. Am Nat 144:S40–S68

    Article  Google Scholar 

  • Stearns SC (1992) The Evolution of Life Histories. In: Oxford University Press, Oxford, pp xii

  • Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annu Rev Ecol Syst 12:253–279

    Article  Google Scholar 

  • Strittmatter LI, Negrón-Ortiz V, Hickey RJ (2002) Subdioecy in Consolea spinosissima (Cactaceae): breeding system and embryological studies. Am J Bot 89:1373–1387

    Article  PubMed  Google Scholar 

  • Strittmatter LI, Negrón-Ortiz V, Hickey RJ (2006) Comparative microsporangium development in male-fertile and male sterile flowers of Consolea (Cactaceae): when and how does pollen abortion occur? Grana 45:81–100

    Article  Google Scholar 

  • Strittmatter LI, Hickey RJ, Negrón-Ortiz V (2008) Heterochrony and its role in sex determination of cryptically dioecious Consolea (Cactaceae) staminate flowers. Bot J Linn Soc 156:305–326

    Article  Google Scholar 

  • Tonnabel J, David P, Pannell JR (2019) Do metrics of sexual selection conform to Bateman’s principles in a wind-pollinated plant? Proceed R Soc B 286(1905):20190532

    Article  Google Scholar 

  • Tonnabel J, David P, Janicke T, Lehner A, Mollet JC, Pannell JR, Dufay M (2021) The scope for postmating sexual selection in plants. Trends Ecol Evol 36(6):556–567

    Article  PubMed  Google Scholar 

  • Tonnabel J, Cosette P, Lehner A, Mollet JC, Mlouka MAB, Grladinovic L, Pannell JR (2022) Rapid evolution of pollen and pistil traits as a response to sexual selection in the post-pollination phase of mating. Curr Biol 32(20):4465–4472

    Article  CAS  PubMed  Google Scholar 

  • Vamosi JC, Otto SP (2002) When looks can kill: the evolution of sexually dimorphic floral display and the extinction of dioecious plants. Biol Sci 269(1496):1187–1194

    Article  Google Scholar 

  • Vanbergen AJ, Initiative IP (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259

    Article  Google Scholar 

  • Verhoeven C, Ren Z-X, Lunau K (2018) False-colour photography: a novel digital approach to visualize the bee view of flowers. J Poll Ecol 23:102–118

    Article  Google Scholar 

  • Weiss MR (1991) Floral color changes as cues for pollinators. Nature 354(1991):227–229

    Article  Google Scholar 

  • Welsford MR, Johnson SD (2012) Solitary and social bees as pollinators of Wahlenbergia (Campanulaceae): single-visit effectiveness, overnight sheltering and responses to flower color. Arthropod-Plant Interact 6:1–14

    Article  Google Scholar 

  • Whitney HM, Milne G, Rands SA, Vignolini S, Martin C, Glover BJ (2013) The influence of pigmentation patterning on bumblebee foraging from flowers of Antirrhinum majus. Naturwissenschaften 100:249–256

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Niu Y, Sun WB, Cai XH, Chen G (2022) Intersexual mimicry and imperfect deceit of a threatened aquatic herb Ottelia acuminata. J Syst Evol 60(2):377–385

    Article  Google Scholar 

  • Zohary M (1952) A monographical study of the genus Pistacia. Palest J Bot (Jerusalem Ser) 5(3):187–228

    Google Scholar 

Download references

Acknowledgements

The authors thank Carlos Portillo, Dillon Jones, Krishna Murthy Ramamoorthy, Kyle Gunther, Jordan Waits, Nelly Rodriguez, Ryan Buck and Yazmin Lommel who kindly helped us in our field work and material processing; Dr. Douglas Yanega (UCR) for help in identification of bees; Dr. Nicholas Barber (SDSU) for help in identification of beetles; SDGE, Bureau of Land Management (BLM) in Imperial County, and Sam Schultz, the owner of the desert view tower, for providing access to the field sites.

Funding

This study was funded by Hispanic-Serving Institutions Education Grants (HSI) Program [grant no. 2018–38422-28614/project accession no. 1016839] from the USDA National Institute of Food and Agriculture, Irwin M. Newell Graduate Research Fund (UC Riverside), 2021 Emergency Spring Funding for Student Assistance with Research, Scholarship and Creative Activities (RSCA) SDSU and Paul Jorgensen Research Grant (Anza Borrego Foundation). We wish to express our sincere appreciation to the AWIS-SD Scholarship, Joshua Tree National Park Graduate Research Grant and Completion of Research and Creative Activity (CORE) Fellowship (SDSU) for their generous support, which was instrumental in the completion of this research.

Author information

Authors and Affiliations

Authors

Contributions

LFR and NR conceived and designed the study. NR and SS executed the methods needed for the studies. NR analyzed the data and made figures. NR and LFR wrote the manuscript and secured funding; all authors provided editorial advice.

Corresponding author

Correspondence to Niveditha Ramadoss.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Susan Whitehead.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2725 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadoss, N., Steele, S. & Flores-Rentería, L. Influence of sexual dimorphism and dichromatism on reproductive success in a rare native cactus. Oecologia 203, 383–394 (2023). https://doi.org/10.1007/s00442-023-05473-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-023-05473-z

Keywords

Navigation