Skip to main content
Log in

The floral organogenesis of Koelreuteria bipinnata and its variety K. bipinnata var. integrifolia (Sapindaceae): evidence of floral constraints on the evolution of monosymmetry

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The floral organogenesis and anatomy of Koelreuteria bipinnata and its variety K. bipinnata var. integrifolia (Sapindaceae) has been investigated to clarify the identity of the two taxa in relation to other species of Koelreuteria, and to understand the shift to monosymmetry in the genus. Although the floral development is highly similar, we found a number of striking differences. Flowers arise in thyrses, with lateral branches forming cincinni of 5–9 flowers. Sepals initiate in a spiral sequence. Five petals arise unidirectionally alternating to the sepals. The last formed petal and one stamen between sepals 3 and 5 are strongly delayed, appearing as a common primordium, while this petal is completely suppressed in var. integrifoliola. Eight stamens initiate sequentially, differ in size and partly precede the development of petals. The gynoecium develops as a triangular primordium on which three carpellary lobes become demarcated simultaneously. Placentation is axile. Septal slits occurring within the style are interpreted as a deep-reaching non-nectariferous extension of the stigma. The massive, oblique disk with crenate apex develops in an extrastaminal position, but is interrupted on the radius of the lost petal. Floral developmental evidence supports variety K. bipinnata var. integrifolia rather than being synonym of K. bipinnata. Floral development is compared with K. paniculata and is discussed in the context of floral evolution of Sapindaceae. Our study demonstrates the importance of developmental shifts on floral evolution. The triangular gynoecium has a strong spatial impact in obliquely reorganizing the symmetry of the flower. It is demonstrated that spatial constraints of calyx and ovary are responsible for the reduction in one of the petals, two stamens and a shift in symmetry of the flower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avalos AA, Lattar EC, Galati BG, Ferrucci MS (2017) Nectary structure and ultrastructure in two floral morphs of Koelreuteria elegans subsp. formosana (Sapindaceae). Flora 226:29–37. https://doi.org/10.1016/j.flora.2016.11.003

    Article  Google Scholar 

  • Bentham G, Hooker JD (1862) Genera plantarum. Reeve and Co, London

    Google Scholar 

  • Buerki S, Forest F, Acevedo-Rodríguez P, Callmander MW, Nylander JA, Harrington M, Sanmartín I, Küpfer P, Alvarez N (2009) Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae). Molec Phylogenet Evol 51:238–258. https://doi.org/10.1016/j.ympev.2009.01.012

    Article  CAS  PubMed  Google Scholar 

  • Cao LM, Xia NH (2009) Floral organogenesis of Delavaya toxocarpa (Sapindaceae; Sapindales). J Syst Evol 47:237–244. https://doi.org/10.1111/j.1759-6831.2009.00023.x

    Article  Google Scholar 

  • Cao LM, Xia NH, Deng YF (2006) Floral organogenesis of Handeliodendron bodinieri (Sapindaceae) and its systematic implications. Acta Phytotax Sin 44:393–400. https://doi.org/10.1360/aps050126

    Article  Google Scholar 

  • Cao LM, Ronse De Craene LP, Wang ZX, Wang YH (2017) The floral organogenesis of Eurycorymbus cavaleriei (Sapindaceae) and its systematic implications. Phytotaxa 297:234–244. https://doi.org/10.11646/phytotaxa.297.3.2

    Article  Google Scholar 

  • De Barros TC, Pedersoli G, Paulino JV, Teixeira SP (2017) In the interface of caesalpinioids and mimosoids: comparative floral development elucidates shared characters in Dimorphandra mollis and Pentaclethra macroloba (Leguminosae). Amer J Bot 104:218–232

    Article  CAS  Google Scholar 

  • Eichler AW (1878) Blütendiagramme 2. W. Engelmann, Leipzig

    Google Scholar 

  • Harrington MG, Edwards KJ, Johnson SA, Chase MW, Gadek PA (2005) Phylogenetic inference in Sapindaceae sensu lato using plastid matK and rbcL DNA sequences. Syst Bot 30:366–382. https://doi.org/10.1600/0363644054223549

    Article  Google Scholar 

  • Hutchinson J (1926) The families of flowering plants. Macmillan and Co, London

    Google Scholar 

  • Judd S, Sanders W, Donoghue J (1994) Angiosperm family pairs: preliminary phylogenetic analyses. Harvard Pap Bot 5:1–51

    Google Scholar 

  • Krüssmann G (1985) Manual of cultivated broadleaved trees and shrubs, vol. 2. Timber Press, Oregon

    Google Scholar 

  • Luo HS, Chen TC (1979) Notes on Chinese Sapindaceae. Acta Phytotax Sin 17:30–39

    Google Scholar 

  • Luo HS, Chen TC (1985) Sapindaceae. In: Editorial board of flora reipublicae popularis sinicae (ed) Flora reipublicae popularis sinicae, vol. 47, issue 1. Science Press, Beijing, pp 4–72

  • Mabberley DJ (1987) The plant book, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Melchior H (1964) Engler’s Syllabus der Pflanzenfamilien, Ed. 12, 2. Gebrüder Borntraeger, Berlin

  • Muller J, Leenhouts PW (1976) A general survey of pollen types in Sapindaceae in relation to taxonomy. In: Gerguson IK, Muller J (eds) The evolutionary significance of the exine. Academic Press, London, pp 407–445

    Google Scholar 

  • Payer JB (1857) Traité d’organogénie comparée de la fleur. Victor Masson, Paris

    Google Scholar 

  • Radlkofer L (1897) Sapindaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien III, 5. W. Engelmann, Berlin, pp 277–366

    Google Scholar 

  • Radlkofer L (1931–1934) Sapindaceae. In: Engler A (ed) Das Pflanzenreich, IV, 165. Engelmann, Leipig

  • Ronse De Craene LP (2010) Floral diagrams. An aid to understanding flower morphology and evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ronse De Craene LP (2013) Reevaluation of the perianth and androecium in Caryophyllales: implications for flower evolution. Pl Syst Evol 299:1599–1636. https://doi.org/10.1007/s00606-013-0910-y

    Article  Google Scholar 

  • Ronse De Craene LP (2018) Understanding the role of floral development in the evolution of angiosperm flowers: a clarification from different perspectives. J Pl Res 3:367–393. https://doi.org/10.1007/s10265-018-1021-1

    Article  Google Scholar 

  • Ronse De Craene LP, Bull-Hereñu K (2016) Obdiplostemony: the transitional stage between two robust floral developmental pathways. Ann Bot (Oxford) 117:709–724. https://doi.org/10.1093/aob/mcw017

    Article  Google Scholar 

  • Ronse De Craene LP, Clinckemaillie D, Smets E (1993) Stamen-petal complexes in Magnoliatae. Bull Jard Bot Natl Belg 62:97–112

    Article  Google Scholar 

  • Ronse De Craene LP, Smets EF, Clinckemaillie D (2000) Floral ontogeny and anatomy in Koelreuteria with special emphasis on monosymmetry and septal cavities. Pl Syst Evol 223:91–107. https://doi.org/10.1007/BF00985329

    Article  Google Scholar 

  • Solís SM, Zini LM, González VV, Ferrucci MS (2017) Floral nectaries in Sapindaceae s.s.: morphological and structural diversity, and their systematic implications. Protoplasma 254:2169–2188. https://doi.org/10.1007/s00709-017-1108-x

    Article  PubMed  Google Scholar 

  • Sun K, Chen JK, Chen ZD (1998) Progress in studies on floral development of angiosperms and some consideration on future studies. Acta Phytotax Sin 36:558–568

    Google Scholar 

  • Thorne RF (2000) The classification and geography of the flowering plants: dicotyledons of the class Angiospermae. Bot Rev 66:441–647

    Article  Google Scholar 

  • Thorne RF, Reveal JL (2007) An update classification of the class Magnoliopsida (“Angiospermae”). Bot Rev 73:67–182. https://doi.org/10.1663/0006-8101(2007)73[67:AUCOTC]2.0.CO;2

    Article  Google Scholar 

  • Tucker SC (1988) Loss versus suppression of floral organs. In: Leins P, Tucker SC, Endress PK (eds) Aspects of floral development. J Cramer, Berlin, pp 69–82. https://doi.org/10.1086/297514

    Chapter  Google Scholar 

  • Umadevi I, Daniel M (1991) Chemosystematics of the Sapindaceae. Feddes Repert 102:607–612

    Article  Google Scholar 

  • Vasconcelos TNC, Prenner G, Santos MF, Wingler A, Lucas EJ (2017) Links between parallel evolution an systematic complexity in angiosperms—a case study of floral development in Myrcia s.l. (Myrtaceae). Perspect Pl Ecol Evol Syst 24:11–24

    Article  Google Scholar 

  • Xia NH, Gadek PA (2007) Sapindaceae. In: Wu ZY, Raven PH (eds) Flora of China 12. Science Press, Beijing, pp 5–24

    Google Scholar 

  • Xu SX (1990) Scanning electron microscopic studies on the development of the organs of Litchi flower. Acta Bot Sin 32:905–908

    Google Scholar 

  • Xu SX (1991) Scanning electron microscopic studies on the organ development of Longan flower. Acta Bot Sin 33:938–942

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 31470008, 31360038). We are grateful to Xiao-Zhao ZHAO, Changsha Research Institute of Mining and Metallurgy, for assistance with the SEM, Frieda Christie, Royal Botanic Garden Edinburgh, for assistance with the LM, and Xu-Li Wu, Hengyang Normal University, for helping us in collecting materials. The Royal Botanic Garden Edinburgh (RBGE) is supported by the Scottish Government’s Rural and Environmental Science and Analytical Services Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis P. Ronse De Craene.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Handling editor: Martin A. Lysak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Liu, J., Lin, Q. et al. The floral organogenesis of Koelreuteria bipinnata and its variety K. bipinnata var. integrifolia (Sapindaceae): evidence of floral constraints on the evolution of monosymmetry. Plant Syst Evol 304, 923–935 (2018). https://doi.org/10.1007/s00606-018-1519-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-018-1519-y

Keywords

Navigation