Skip to main content
Log in

Crossing barriers in an extremely fragmented system: two case studies in the afro-alpine sky island flora

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The flora on the afro-alpine sky islands is renowned for extreme fragmentation, representing a unique natural experiment in biogeography. Here we address the roles of isolation and gene flow, in particular across the narrow Rift Valley (the RV barrier) that cuts through the Ethiopian Highlands (EH), and across the vast low-lying landscape that separates EH from the East African mountains (the EH–EA barrier). We inferred the history of two species with different dispersal mechanisms, but with similar geographic ranges and habitats based on Amplified fragment length polymorphisms (AFLPs). Contrary to our predictions, we found that the populations from opposite sides of the RV barrier were less similar than those from opposite sides of the EH–EA barrier, and that only the supposedly short distance-dispersed species (Trifolium cryptopodium) showed a strong signal of secondary gene flow across the RV barrier. In the wind-dispersed Carduus schimperi, we rather found an evidence for the gene flow between differentiated populations inhabiting different EA mountains. Both species harbored little genetic diversity but considerable genetic rarity in several individual mountains, suggesting long-term isolation and bottlenecks during climatically unfavorable periods. Our genetic data corroborate a division of C. schimperi into three subspecies, but with new delimitation of their ranges, and of T. cryptopodium into two intraspecific taxa. Our findings support the idea that stochasticity may play a major role in shaping extremely fragmented ecosystems such as the afro-alpine. After initial colonization of different mountains, periods of isolation may alternate with unpredictable episodes of intermountain gene flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arctander P, Johansen C, Coutellec-Vreto MA (1999) Phylogeography of three closely related African bovids (tribe Alcelaphini). Mol Biol Evol 16:1724–1739

    Article  CAS  PubMed  Google Scholar 

  • Assefa A, Ehrich D, Taberlet P, Nemomissa S, Brochmann C (2007) Pleistocene colonization of afro-alpine ‘sky islands’ by the arctic-alpine Arabis alpina. Heredity 99:133–142

    Article  CAS  PubMed  Google Scholar 

  • Ayele TB, Gailing O, Umer M, Finkeldey R (2009) Chloroplast DNA haplotype diversity and postglacial recolonization of Hagenia abyssinica (Bruce) J.F. Gmel in Ethiopia. Plant Syst Evol 280:175–185

    Article  CAS  Google Scholar 

  • Barres L, Sanmartin I, Anderson C, Susanna A, Buerki S, Galbany-Casals M, Vilatersana R (2013) Reconstructiong the evolution and biogeographic history of Tribe Cardueae (Compositae). Am J Bot 100:867–882

    Article  PubMed  Google Scholar 

  • Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Brühl C (1997) Flightless insects: a test case for historical relationships of African mountains. J Biogeogr 24:233–250

    Article  Google Scholar 

  • Chorowicz J (2005) The East African rift system. J Afr Earth Sci 43:379–410

    Article  Google Scholar 

  • Coetzee JA (1964) Evidence for a considerable depression of the vegetation belts during the upper Pleistocene on the East African Mountains. Nature 204:564–566

    Article  Google Scholar 

  • Désamoré A, Laenen B, Devos N, Popp M, González-Mancebo JM, Carine MA, Vanderpoorten A (2011) Out of Africa: north-westwards Pleistocene expansions of the heather Erica arborea. J Biogeogr 38:164–176

    Article  Google Scholar 

  • Ehrich D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604

    Article  Google Scholar 

  • Ehrich D (2007) Structure-sum v. 2007: A series of R functions for summarizing the outputs of the program Structure ver. 2.2. Unpublished, available from the author upon request

  • Ehrich D, Gaudeul M, Assefa A, Koch MA, Mummenhoff K, Nemomissa S, Brochmann C (2007) Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Mol Ecol 16:2542–2559

    Article  CAS  PubMed  Google Scholar 

  • Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (Trifolium–Leguminosae). Mol Phylogen Evol 39:688–705

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier LLG, Schneider S (2005) ARLEQUIN version 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard J (2007) Inference of population structure using multilocus genotype data: dominant markers and null allele. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fries TCE (1923) Beiträge zur Kenntnis der Flora des Kenia, Mt. Aberdare und Mt. Elgon. Notizblatt des Königl Botanischen Gartens und Museums zu Berlin 8:389–423

    Google Scholar 

  • Gaudeul M, Taberlet P, Till-Bottraud I (2000) Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Mol Ecol 9:1625–1637

    Google Scholar 

  • Gillett JB (1952) The genus Trifolium in southern Arabia and in Africa south of the Sahara. Kew Bull 7:367–404

    Article  Google Scholar 

  • Gillett JB, Polhill RM, Verdcourt B (1971) Leguminosae IIII. In: Milne-Redhead EE, Polhill RM eds. Flora of Tropical East Africa. London: crown agents for overseas governments and Administrations, pp 1016–1036

  • Gottelli D, Marino J, Sillero-Zubiri C, Funk SM (2004) The effect of the last glacial age on speciation and population genetic structure of the endangered Ethiopian wolf (Canis simensis). Mol Ecol 13:2275–2286

    Article  CAS  PubMed  Google Scholar 

  • Hedberg O (1957) Afroalpine vascular plants. a taxonomic revision. Symb Bot Ups 15:1–411

    Google Scholar 

  • Hedberg O (1969) Evolution and speciation in a tropical high mountain flora. Bot J Linn Soc 1:135–148

    Article  Google Scholar 

  • Hedberg O (1970) Evolution of the afroalpine flora. Biotropica 2:16–23

    Article  Google Scholar 

  • Hedberg O (1986) Origin of the afroalpine flora. In: Vuilleumier F, Monastero M (eds) High altitude tropical biogeography. Oxford University Press, New York, pp 443–468

    Google Scholar 

  • Hedberg I, Hedberg O (1977) Chromosome numbers of afroalpine and afromontane angiosperms. Bot Not 130:1–24

    Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey C (1968) Notes on Compositae: III. The cynareae in east tropical Africa. Kew Bull 22:107–140

    Article  Google Scholar 

  • Jeffrey C, Beentje HJ (2000) Compositae I. In: Beentje HJ (ed) Flora of tropical East Africa. Balkema, Rotterdam, pp 46–54

    Google Scholar 

  • Kadu CA, Schueler S, Konrad H, Muluvi GM, Eyog-Matig O, Muchugi A, Williams VL, Ramamonjisoa L, Kapinga C, Foahom B, Katsvanga C, Hafashimana D, Obama C, Geburek T (2011) Phylogeography of the Afromontane Prunus africana reveals a former migration corridor between East and West African highlands. Mol Ecol 20:165–178

    Article  CAS  PubMed  Google Scholar 

  • Kadu CA, Konrad H, Schueler S, Muluvi GM, Eyog-Matig O, Muchugi A, Williams VL, Ramamonjisoa L, Kapinga C, Foahom B, Katsvanga C, Hafashimana D, Obama C, Geburek T (2013) Divergent pattern of nuclear genetic diversity across the range of the Afromontane Prunus africana mirrors variable climate of African highlands. Ann Bot 111:47–60

    Article  PubMed  Google Scholar 

  • Kazmi SMA (1963) Revision der Gattung Carduus (Compositae), Teil I. Sonderdruck aus den Mitteilungen der Botanischen Staatssamlung München 5:139–198

    Google Scholar 

  • Kebede M, Ehrich D, Taberlet P, Nemomissa S, Brochmann C (2007) Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East African mountains. Mol Ecol 16:1233–1243

    Article  CAS  PubMed  Google Scholar 

  • Koch MA, Kiefer C, Ehrich D, Vogel J, Brochmann C, Mummenhoff K (2006) Three times out of Asia Minor: the phylogeography of Arabis alpina L. (Brassicaceae). Mol Ecol 15:825–839

    Article  CAS  PubMed  Google Scholar 

  • Kosman E (2003) Nei’s gene diversity and the index of average differences are identical measures of diversity within populations. Plant Pathol 52:533–535

    Article  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Popp M, Gizaw A, Nemomissa S, Suda J, Brochmann C (2008) Colonization and diversification in the African ‘sky islands’ by Eurasian Lychnis L. (Caryophyllaceae). J Biogeogr 35:1016–1029

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Rohlf F (2000) NTSYSpc: Numerical Taxonomy and Multivariate Analysis System. Version 2.11a. Setauket (NY): Exeter Software

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical disply of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Schönswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 54:725–732

    Article  Google Scholar 

  • Tadesse M (2004) Asteraceae (Compositae). In: Hedberg I, Friss I, Edwards S (eds) Flora of Ethiopia and Eritrea. Addis Ababa University, The National Herbarium, Addis Ababa

    Google Scholar 

  • Thulin M (1989) Subfamily Papilionoideae (Faboideae). In: Edwards S, Hedberg I (eds) Flora of Ethiopia and Eriteria. The National Herbarium, Addis Ababa University/Department of Systematic Botany, Uppsala University, Uppsala, Addis Ababa

    Google Scholar 

  • Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Vos P, Hogers R, Bleekwe M, Reijians M, Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP a new techinique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gizaw A, Kebede M, Nemomissa S, Ehrich D, Bekele B, Mirré V, Popp M, Brochmann C (2013) Phylogeography of the heathers Erica arborea and E. trimerain the afro-alpine ‘sky islands’ inferred from AFLP and plastid DNA sequences. FLORA 208:453–463

    Google Scholar 

  • Yalden DW (1983) The extent of high ground in Ethiopia compared to the rest of Africa. SINET 6:35–38

    Google Scholar 

Download references

Acknowledgments

This study is part of the project ‘AFROALP-II—Afro-alpine ‘sky islands’: genetic versus taxonomic biodiversity, climate change, and conservation’ funded by The Norwegian Programme for Development, Research and Higher Education (NUFU; project no 2007/1058) to S. Nemomissa and C. Brochmann. We thank the other members of the AFROALP-II team for discussions and help during the fieldwork. Sincere thanks are due to Mats Thulin and Manuel Pimentel who determined/verified the identity of our Trifolium and Carduus collections, respectively, and to Desalegn Chala for producing the base map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tigist Wondimu.

Additional information

T. Wondimu and A. Gizaw should be considered shared first authors.

S. Nemomissa and C. Brochmann should be considered shared senior authors.

Appendix 1

Appendix 1

See Table 4.

Table 4 Geographic origin and AFLP-based gene diversity, genetic rarity, and genetic (STRUCTURE) groups in Carduus schimperi and Trifolium cryptopodium

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wondimu, T., Gizaw, A., Tusiime, F.M. et al. Crossing barriers in an extremely fragmented system: two case studies in the afro-alpine sky island flora. Plant Syst Evol 300, 415–430 (2014). https://doi.org/10.1007/s00606-013-0892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0892-9

Keywords

Navigation