Skip to main content
Log in

Pattern of natural introgression in a Nothofagus hybrid zone from South American temperate forests

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Interspecific gene flow is a common phenomenon in Nothofagaceae species; however, the dynamics of introgression in hybrid zones remains largely unknown. We focused on two ecologically and morphologically different Nothofagus species from Patagonia, Nothofagus nervosa and Nothofagus obliqua. In a natural hybrid zone, we established two plots 280 m apart in altitude (ca. 1.9 °C difference in mean temperature), and two subplots which captured microsite variation (abundance and spatial distribution of species and predominance of wind direction). We used intensive sampling of individuals (2055, including adults and regeneration) and molecular genotyping of 6 highly species-specific nuclear microsatellites for the identification and classification of hybrids, based on estimates of ancestry and interclass heterozygosity. We evaluated the relative contribution of our sampling effects to variation in hybrid incidence and direction of introgression using generalized linear mixed effects models. We determined that introgressive hybridization occurs at a global rate of 7.8% and that variation was mostly explained by plots (frequency at low altitude was approximately twice that found at high altitude), while it was less influenced by subplots. The high altitude plot was dominated by late-generation backcrosses to N. obliqua (asymmetric bimodality), whereas the low altitude plot consisted of intermediate hybrids (unimodality) and showed asymmetry for introgression between subplots. Differences were not detected between adults and regeneration, suggesting early-acting reproductive isolating barriers. F1 hybrids occur at a global frequency of 3.8%, and are fertile, as the detection of first- and late-generation hybrids indicates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abadie P, Roussel G, Dencausse B et al (2012) Strength, diversity and plasticity of postmating reproductive barriers between two hybridizing oak species (Quercus robur L. and Quercus petraea (Matt) Liebl.) J Evol Biol 25:157–173. doi:10.1111/j.1420-9101.2011.02414.x

    Article  CAS  PubMed  Google Scholar 

  • Acosta MC, Premoli AC (2010) Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Mol Phylogenet Evol 54:235–242. doi:10.1016/j.ympev.2009.08.008

    Article  PubMed  Google Scholar 

  • Albarrán-Lara AL, Mendoza-Cuenca L, Valencia-Avalos S et al (2010) Leaf fluctuating asymmetry increases with hybridization and introgression between Quercus magnoliifolia and Quercus resinosa (Fagaceae) through an altitudinal gradient in Mexico. Int J Plant Sci 171:310–322. doi:10.1086/650317

    Article  Google Scholar 

  • Arana V, Gonzalez-Polo M, Martinez-Meier A et al (2016) Seed dormancy responses to temperature relate to Nothofagus species distribution and determine temporal patterns of germination across altitudes in Patagonia. New Phytol 209:507–520. doi:10.1111/nph.13606

    Article  CAS  PubMed  Google Scholar 

  • Arnold M (2006) Evolution through genetic exchange. Oxford University Press

  • Azpilicueta MM, Gallo LA (2009) Shaping forces modelling genetic variation patterns in the naturally fragmented forests of a South-American beech. Biochem Syst Ecol 37:290–297. doi:10.1016/j.bse.2009.05.004

    Article  CAS  Google Scholar 

  • Azpilicueta MM, Gallo LA, van Zonneveld M et al (2013) Management of Nothofagus genetic resources : definition of genetic zones based on a combination of nuclear and chloroplast marker data. For Ecol Manag 302:414–424

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375–39.

  • Burgess KS, Morgan M, Deverno L, Husband BC (2005) Asymmetrical introgression between two Morus species (M. alba, M. rubra) that differ in abundance. Mol Ecol 14:3471–3483. doi:10.1111/j.1365-294X.2005.02670.x

    Article  CAS  PubMed  Google Scholar 

  • Burke JM, Arnold ML (2001) Genetics and the Fitness of Hybrids. Annu Rev Genet 35:31-52

  • Coyne J, Orr H (2004) Speciation. Sinauer associates, Inc. Sunderland, Massachusetts USA

  • Curry CM (2015) An integrated framework for hybrid zone models. Evol Biol 42:359–365. doi:10.1007/s11692-015-9332-9

    Article  Google Scholar 

  • Curtu AL, Gailing O, Finkeldey R (2009) Patterns of contemporary hybridization inferred from paternity analysis in a four-oak-species forest. BMC Evol Biol 9:1–9. doi:10.1186/1471-2148-9-284

    Article  Google Scholar 

  • De La Torre AR (2015) Genomic admixture and species delimintation in forest trees. In: Pontarotti P (ed) Evolutionary Biology: Biodiversification from genotype to phenotype. Springer International Publishing, Switzerland, pp 287–303

  • Devitt TJ, Baird SJ, Moritz C (2011) Asymmetric reproductive isolation between terminal forms of the salamander ring species Ensatina eschscholtzii revealed by fine-scale genetic analysis of a hybrid zone. BMC Evol Biol 11:245. doi:10.1186/1471-2148-11-245

    Article  PubMed  PubMed Central  Google Scholar 

  • Donoso C, Morales J, Romero M (1990) Hibridación natural entre roble (Nothofagus obliqua) (Mirb) Oerst. y raulí (N. alpina) (Poepp. & Endl.) Oerst, en bosques del sur de Chile. Rev Chil Hist Nat 63:49–60

    Google Scholar 

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Earl D, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • El Mujtar V, Gallo L, Lang T, Garnier-Géré P (2014) Development of genomic resources for Nothofagus species using next-generation sequencing data. Mol Ecol Resour 14:1281–1295. doi:10.1111/1755-0998.12276

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data : dominant markers and null alleles. Mol Ecol Notes 7:574–578. doi:10.1111/j.1471-8286.2007.01758.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field DL, Ayre DJ, Whelan RJ, Young AG (2011) The importance of pre-mating barriers and the local demographic context for contemporary mating patterns in hybrid zones of Eucalyptus aggregata and Eucalyptus rubida. Mol Ecol 20:2367–2379. doi:10.1111/j.1365-294X.2011.05054.x

    Article  PubMed  Google Scholar 

  • Fitzpatrick B (2012) Estimating ancestry and heterozygosity of hybrids using molecular markers. BMC Evol Biol 12:1–14

    Article  Google Scholar 

  • Gailing O, Curtu AL (2014) Interspecific gene flow and maintenance of species integrity in oaks. Ann for res 57:5–18. doi: 10.15287/afr.2014.171

  • Gallo L (2002) Conceptual and experimental elements to model natural inter-specific hybridisation between two mountain southern beeches (Nothofagus spp). In: Degen B, Loveless M, Kremer A (eds) Modelling and exprimental research on genetic processes in tropical and temperate forests. Embrapa-Silvolab-Guyane, p 200

  • Gallo L, Marchelli P, Breitembucher A (1997) Morphological and allozymic evidence of natural hybridization between two southern beeches (Nothofagus spp.) and its relation to heterozygosity and height growth. For Genet 4:15–23

    Google Scholar 

  • García L, Droppelmann F, Rivero M (2013) Morfología y fenología floral de Nothofagus alpina (Nothofagaceae) en un huerto semillero clonal en la región de Los Ríos, Chile. Bosque (Valdivia) 34:221–231. doi:10.4067/S0717-92002013000200011

    Article  Google Scholar 

  • Guichoux E, Garnier-Géré P, Lagache L et al (2013) Outlier loci highlight the direction of introgression in oaks. Mol Ecol 22:450–462. doi:10.1111/mec.12125

    Article  CAS  PubMed  Google Scholar 

  • Harrison RG, Larson EL (2014) Hybridization, introgression, and the nature of species boundaries. J Hered 105:795–809. doi:10.1093/jhered/esu033

    Article  Google Scholar 

  • Hauser TP, Damgaard C, Jørgensen RB (2003) Frequency-dependent fitness of hybrids between oilseed rape (Brassica napus) and weedy B.rapa (Brassicaceae). Am J Bot 90(4):571-578

  • Hewitt G (1988) Hybrid zones-natural laboratories for evolutionary studies. Trends Ecol Evol 3:158–167

    Article  CAS  PubMed  Google Scholar 

  • Jiggins CD, Mallet J (2000) Bimodal hybrid zones and speciation. Trends Ecol Evol 15:250–255. doi:10.1016/S0169-5347(00)01873-5

    Article  CAS  PubMed  Google Scholar 

  • Jones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30. doi:10.1111/j.1755-0998.2009.02778.x

    Article  PubMed  Google Scholar 

  • Johnston JA, Grise DJ, Donovan LA, Arnold ML (2001) Environment-dependent performance and fitness of Iris brevicaulis, I. fulva (Iridaceae), and hybrids. Am J Bot 88(5):933-938

  • Lepais O, Gerber S (2011) Reproductive patterns shape introgression dynamics and species succession within the European white oak species complex. Evolution (N Y) 65:156–170. doi:10.1111/j.1558-5646.2010.01101.x

    Google Scholar 

  • Lepais O, Petit RJ, Guichoux E et al (2009) Species relative abundance and direction of introgression in oaks. Mol Ecol 18:2228–2242. doi:10.1111/j.1365-294X.2009.04137.x

    Article  CAS  PubMed  Google Scholar 

  • Lexer C, Heinze B, Alia R, Rieseberg LH (2004) Hybrid zones as a tool for identifying adaptive genetic variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp.) For Ecol Manag 197:49–64. doi:10.1016/j.foreco.2004.05.004

    Article  Google Scholar 

  • Lind JF, Gailing O (2013) Genetic structure of Quercus rubra L. and Quercus ellipsoidalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers. Tree Genet Genomes 9:707–722. doi:10.1007/s11295-012-0586-4

    Article  Google Scholar 

  • Lindtke D, Gompert Z, Lexer C, Buerkle CA (2014) Unexpected ancestry of Populus seedlings from a hybrid zone implies a large role for postzygotic selection in the maintenance of species. Mol Ecol 23:4316–4330. doi:10.1111/mec.12759

    Article  PubMed  Google Scholar 

  • Lowry DB, Modliszewski JL, Wright KM et al (2008) Review. The strength and genetic basis of reproductive isolating barriers in flowering plants. Philos Trans R Soc Lond Ser B Biol Sci 363:3009–3021. doi:10.1098/rstb.2008.0064

    Article  Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237. doi:10.1016/j.tree.2005.02.010

    Article  PubMed  Google Scholar 

  • Marchelli P, Gallo L (2001) Genetic diversity and differentiation in a southern beech subjected to introgressive hybridization. Heredity (Edinb) 87:284–293

    Article  CAS  Google Scholar 

  • Marchelli P, Gallo L (2004) The combined role of glaciation and hybridization in shaping the distribution of genetic variation in a Patagonian southern beech. J Biogeogr 31:451–460. doi:10.1046/j.0305-0270.2003.01008.x

    Article  Google Scholar 

  • Marchelli P, Smouse PE, Gallo LA (2012) Short-distance pollen dispersal for an outcrossed, wind pollinated souther beech (Nothofagus nervosa (Phil.) Dim. et Mil.) Tree Genet Genomes 8:1123–1134. doi:10.1007/s11295-012-0500-0

    Article  Google Scholar 

  • Moran EV, Willis J, Clark JS (2012) Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). Am J Bot 99:92–100. doi:10.3732/ajb.1100023

    Article  PubMed  Google Scholar 

  • Ortego J, Gugger PF, Riordan EC, Sork VL (2014) Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. J Biogeogr 41:1895–1908. doi:10.1111/jbi.12334

    Article  Google Scholar 

  • Payseur BA (2010) Using differential introgression in hybrid zones to identify genomic regions involved in speciation. Mol Ecol Resour 10:806–820. doi:10.1111/j.1755-0998.2010.02883.x

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Peakall R, Smouse P (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollegioni P, Olimpieri I, Woeste KE et al (2013) Barriers to interspecific hybridization between Juglans nigra L. and J. regia L species. Tree Genet Genomes 9:291–305. doi:10.1007/s11295-012-0555-y

    Article  Google Scholar 

  • Premoli AC, Mathiasen P, Acosta MC, Ramos VA (2012) Phylogeographically concordant chloroplast DNA divergence in sympatric Nothofagus s.s. How deep can it be? New Phytol 193:261–275. doi:10.1111/j.1469-8137.2011.03861.x

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riveros M, Parades MA, Rosas MT et al (1995) Reproductive biology in species of the genus Nothofagus. Environ Exp Bot 35:519–524. doi:10.1016/0098-8472(95)00022-4

    Article  Google Scholar 

  • Roe AD, Macquarrie CJK, Gros-Louis MC et al (2014) Fitness dynamics within a poplar hybrid zone: I. Prezygotic and postzygotic barriers impacting a native poplar hybrid stand. Ecol Evol 4:1629–1647. doi:10.1002/ece3.1028

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubidge EM, Taylor EB (2004) Hybrid zone structure and the potential role of selection in hybridizing populations of native westslope cutthroat trout (Oncorhynchus clarki lewisi) and introduced rainbow trout (O. mykiss). Mol Ecol 13:3735–3749. doi:10.1111/j.1365-294X.2004.02355.x

    Article  PubMed  Google Scholar 

  • Rusch VE (1993) Altitudinal variation in the phenology of Nothofagus pumilio in Argentina. Rev Chil Hist Nat 66:131–141

    Google Scholar 

  • Sabatier Y, Azpilicueta M, Marchelli P et al (2011) Distribución natural de Nothofagus alpina y Nothofagus obliqua (Nothofagaceae) en Argentina, dos especies de primera importancia forestal de los bosques templados norpatagónicos. Boletín la Soc Argentina Botánica 46:131–138

    Google Scholar 

  • Smissen R, Richardson S, Morse C, Heenan P (2014) Relationships, gene flow and species boundaries among New Zealand Fuscospora (Nothofagaceae: southern beech). New Zeal J Bot 52:389–406. doi:10.1080/0028825X.2014.960946

    Article  Google Scholar 

  • Smissen R, Mitchell C, Roth M, Heenan P (2015) Absence of hybridisation between Fuscospora species at a site in Arthur’s Pass National Park, New Zealand. New Zeal J Bot 53:168–174. doi:10.1080/0028825X.2015.1040422

    Article  Google Scholar 

  • Sola G, Beltrán HA, Chauchard L, Gallo L (2015) Efecto del manejo silvicultural sobre la regeneración de un bosque de Nothofagus dombeyi, N. alpina y N. obliqua en la Reserva Nacional Lanín (Argentina). Bosque 36:113–120

    Article  Google Scholar 

  • Sola G, El Mujtar V, Tsuda Y et al (2016) The effect of silvicultural management on the genetic diversity of a mixed Nothofagus forest in Lanín Natural Reserve, Argentina. For Ecol Manag 363:11–20. doi:10.1016/j.foreco.2015.12.018

    Article  Google Scholar 

  • Soliani C, Gallo L, Marchelli P (2012) Phylogeography of two hybridizing southern beeches (Nothofagus spp.) with different adaptive abilities. Tree Genet Genomes 8:659–673. doi:10.1007/s11295-011-0452-9

    Article  Google Scholar 

  • Stecconi M, Marchelli P, Puntieri J et al (2004) Natural hybridization between a deciduous (Nothofagus antarctica, Nothofagaceae) and an evergreen (N. dombeyi) forest tree species: evidence from morphological and isoenzymatic traits. Ann Bot 94:775–786. doi:10.1093/aob/mch205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan AR, Owusu SA, Weber JA et al (2016) Hybridization and divergence in multi-species oak (Quercus) communities. Bot J Linn Soc 181:99–114. doi:10.1111/boj.12393

    Article  Google Scholar 

  • Sun M, Lo EYY (2011) Genomic markers reveal introgressive hybridization in the Indo-West Pacific mangroves: a case study. PLoS One 6:e19671. doi:10.1371/journal.pone.0019671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson AM, Dick CW, Pascoini AL, Dayanandan S (2015) Despite introgressive hybridization, North American birches (Betula spp.) maintain strong differentiation at nuclear microsatellite loci. Tree Genet Genomes 11:1–12. doi:10.1007/s11295-015-0922-6

    Article  Google Scholar 

  • Torales SL, Rivarola M, Pomponio MF et al (2012) Transcriptome survey of Patagonian southern beech Nothofagus nervosa (= N. alpina): assembly, annotation and molecular marker discovery. BMC Genomics 13:291. doi:10.1186/1471-2164-13-291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres C (2012) Biología reproductiva de Nothofagus, con especial referencia N. obliqua (Mirb.) Oerst. ( roble pellín ) y N. nervosa ( Phil.) Krasser ( raulí ). Universidad Nacional del Comahue. Centro Regional Universitario Bariloche

  • Torres CD, Puntieri JG (2013) Pollination and self-interference in Nothofagus. Flora - Morphol Distrib Funct Ecol Plants 208:412–419. doi:10.1016/j.flora.2013.07.002

    Article  Google Scholar 

  • Turelli M, Barton NH, Coyne JA (2001) Theory and speciation. Trends Ecol Evol 16(7):330-343

  • Vähä J-P, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72. doi:10.1111/j.1365-294X.2005.02773.x

    Article  PubMed  Google Scholar 

  • Valencia-Cuevas L, Mussali-Galante P, Piñero D et al (2015) Hybridization of Quercus castanea (Fagaceae) across a red oak species gradient in Mexico. Plant Syst Evol 301:1085–1097. doi:10.1007/s00606-014-1151-4

    Article  Google Scholar 

  • Varela SA, Gyenge JE, Fernández ME, Schlichter T (2010) Seedling drought stress susceptibility in two deciduous Nothofagus species of NW Patagonia. Trees 24:443–453. doi:10.1007/s00468-010-0412-2

    Article  Google Scholar 

  • Veblen T, Donoso C, Kitzberger T, Rebertus A (1996) Ecology of southern Chilean and southern Argentinean Nothofagus forests. In: Veblen T, Hill R, Read J (eds) Ecology and biogeography of Nothofagus forests. Yale University Press, New Haven, pp 293–353

    Google Scholar 

  • Whitney KD, Ahern JR, Campbell LG et al (2010) Patterns of hybridization in plants. Perspect Plant Ecol Evol Syst 12:175–182. doi:10.1016/j.ppees.2010.02.002

    Article  Google Scholar 

  • Widmer A, Lexer C, Cozzolino S (2009) Evolution of reproductive isolation in plants. Heredity (Edinb) 102:31–38. doi:10.1038/hdy.2008.69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Pauline Garnier-Géré for reviewing a preliminary version of the manuscript and offering helpful suggestions and comments. The authors thank Fernando Umaña from Laboratorio de Teledetección y SIG – EEA INTA Bariloche for the production of the maps included in this article. This research has been funded by Instituto Nacional de Tecnología Agropecuaria (INTA): Proyecto de Domesticación de especies forestales nativas PNFOR 044001 and Programa de Mejoramiento de Especies Forestales (PROMEF) BIRF 7520-AR.

Authors’ contribution

L.G. and V.E.M. conceived the experimental strategy and organized the funding. G.S. and V.E.M. performed the DNA extraction and genotyping of samples. V.E.M. carried out the population genetic and bayesian clustering analyses, and the identification and classification of hybrids. A.A. performed the statistical analyses (GLMM). V.E.M. wrote the manuscript, considering the contributions of all the other authors, who approved the final manuscript.

Data archiving statement

Genotype database is available in Online Resource 8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Mujtar Verónica.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. C. González-Martínez

Electronic supplementary material

ESM 1

(DOCX 707 kb)

ESM 2

(DOCX 500 kb)

ESM 3

(DOCX 33 kb)

ESM 4

(DOCX 81 kb)

ESM 5

(DOCX 110 kb)

ESM 6

(DOCX 104 kb)

ESM 7

(DOCX 22 kb)

ESM 8

(TXT 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verónica, E.M., Georgina, S., Alejandro, A. et al. Pattern of natural introgression in a Nothofagus hybrid zone from South American temperate forests. Tree Genetics & Genomes 13, 49 (2017). https://doi.org/10.1007/s11295-017-1132-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-017-1132-1

Keywords

Navigation