Skip to main content
Log in

Pollination and floral scent differentiation in species of the Philodendron bipinnatifidum complex (Araceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The Philodendron bipinnatifidum complex of Philodendron subgenus Meconostigma may comprise four species, which because of only slight and not very distinct morphological differences are not all unanimously recognized as good species. To find out whether these species are reproductively isolated, we studied the flowering rhythm, thermogenesis and pollination biology of three species of this complex, namely of P. bipinnatifidum, P. aff. bipinnatifidum (provisionally named “P. form selloum”) and P. mello-barretoanum in Brazil. Of the first two mentioned taxa, floral scent was collected and scent compounds were identified by GC–MS. The results showed that the coastal forest species P. bipinnatifidum has a two-, or three-night flowering rhythm, with the pistillate stage in the first night and the staminate stage lasting the second and sometimes also the third night. Strong thermogenesis with extended heating periods of several hours during the first part of the usual two subsequent nights and the maximum temperatures of up to 40 °C absolute heating of the spadices occurred in the pistillate and staminate stages. Concomitant with the heating periods, relatively low amounts of principally (Z)-2-pentenyl acetate and (Z)-jasmone were emitted by both the pistillate and staminate stage inflorescences. The dynastid scarab beetle Cyclocephala variolosa was the only pollinator attracted. The upland forest P. form selloum always had a two-night flowering rhythm with the pistillate stage in the first and the staminate stage in the subsequent night. This world-record holder of thermogenesis can heat up to the remarkable 45 °C during a relatively short period in the evening of the pistillate stage. During the thermogenic period, enormous amounts of principally 4-methoxystyrene and 3,4-dimethoxystyrene were produced and which could attract a large number of female and male individuals of the dynastid scarab beetle Erioscelis emarginata. In the staminate stage of P. form selloum, temperature elevation is significantly lower and the scent compounds are different from the pistillate stage. The cerrado biome species P. mello-barretoanum has a flowering rhythm similar to P. form selloum, reaching a maximum heating of about 40 °C during the pistillate stage. The sole pollinator attracted was Cyclocephala atricapilla. The differences observed and analyzed among the taxa, including the flowering rhythm, thermogenic activities, scent compounds emitted, pollinating dynastid scarab beetles attracted, as well as slight morphological differences and apparent geographical exclusiveness noted in these three taxa are strong indicators that P. bipinnatifidum, P. form selloum and P. mello-barretoanum are different enough to be considered good species. The morphological affinities of these species might be a hint that speciation has been a recent event and/or also that reproductive isolation based on different, non-overlapping distribution areas, different scent compounds and different pollinators was effective enough to need further morphological differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publ Corp, Carol Stream

    Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Angioy AM, Stensmyr MC, Urru I, Puliafito M, Collu M, Hansson BS (2004) Function of the heater: the dead-horse arum revisited. Proc R Soc London B 271:S13–S15

    Article  Google Scholar 

  • Barroso GM (1959/61) Araceae do Brasil. Arquivos Jardim Botânico 17:5–15

  • Beach JH (1982) Beetle pollination of Cyclanthus bipartitus (Cyclanthaceae). Am J Bot 69:1074–1081

    Article  Google Scholar 

  • Brunke EJ, Hammerschmidt FJ, Schmaus G (1992) Scent of roses—recent results. Flav Fra J 7:195–198

    Article  CAS  Google Scholar 

  • Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. Primer-E, Plymouth, pp 1–91

    Google Scholar 

  • Croat TB (1997) A revision of Philodendron subgenus Philodendron (Araceae) for Mexico and Central America. Ann Missouri Bot Gard 84:311–704

    Article  Google Scholar 

  • d’Araújo AG et al (1968) Quarto catálogo dos insetos que vivem nas plantas do Brasil. Parte II (1). Ministério da Agricultura, Rio de Janeiro

  • D’Alessandro M, Held M, Triponez Y, Turlings TCJ (2006) The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps. J Chem Ecol 32:2733–2748

    Article  PubMed  Google Scholar 

  • Dötterl S, Jürgens A (2005) Spatial fragrance patterns in flowers of Silene latifolia: lilac compounds as olfactory nectar guides? Plant Syst Evol 255:99–109

    Article  Google Scholar 

  • Dötterl S, Wolfe LM, Jürgens A (2005) Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 66:203–213

    Article  PubMed  Google Scholar 

  • Dötterl S, David A, Boland W, Silberbauer-Gottsberger I, Gottsberger G (2012) Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated Araceae. J Chem Ecol 38:1539–1543

    Article  PubMed  Google Scholar 

  • Engler A, Krause K (1912) Araceae-Philodendroideae-Philodendreae. Allgemeiner Teil. In: Engler A (ed) Das Pflanzenreich IV 23D, Heft 55, pp 1–134

  • Flament I, Debonneville C, Furrer A (1993) Volatile constituents of roses: characterization of cultivars based on the headspace analysis of living flower emissions. In: Teranishi R, Buttery RG, Sugisawa H (eds) Bioactive volatile compounds from plants. American Chemical Society, Washington, pp 269–281

    Chapter  Google Scholar 

  • French JC, Chung MG, Hur YK (1995) Chloroplast DNA phylogeny of the Ariflorae. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution. Royal Bot Gardens, Kew, pp 255–275

    Google Scholar 

  • Gibernau M, Barabé D (2000) Thermogenesis in three Philodendron species (Araceae) of French Guiana. Canadian J Bot 78:685–689

    Article  Google Scholar 

  • Gibernau M, Barabé D (2002) Pollination ecology of Philodendron squamiferum (Araceae). Can J Bot 80:316–320

    Article  Google Scholar 

  • Gibernau M, Barabé D, Cerdan P, Dejean A (1999) Beetle pollination of Philodendron solimoesense (Araceae) in French Guiana. Inter J Plant Sci 160:1135–1143

    Article  Google Scholar 

  • Gibernau M, Barabé D, Labat D (2000) Flowering and pollination of Philodendron melinonii (Araceae) in French Guiana. Plant Biol 2:331–334

    Article  Google Scholar 

  • Gonçalves EG (2004) Araceae from Central Brazil: comments on their diversity and biogeography. Ann Missouri Bot Gard 91:457–463

    Google Scholar 

  • Gonçalves EG, Salviani ER (2002) New species and changing concepts of Philodendron subgenus Meconostigma (Araceae). Aroideana 25:2–15

    Google Scholar 

  • Gottsberger G (1989) Beetle pollination and flowering rhythm of Annona spp. (Annonaceae) in Brazil. Plant Syst Evol 167:165–187

    Article  Google Scholar 

  • Gottsberger G, Amaral A Jr (1984) Pollination strategies in Brazilian Philodendron species. Ber Deutsch Bot Ges 97:391–410

    Google Scholar 

  • Gottsberger G, Silberbauer-Gottsberger I (1991) Olfactory and visual attraction of Erioscelis emarginata (Cyclocephalini, Dynastinae) to the inflorescences of Philodendron selloum (Araceae). Biotropica 23:23–28

    Article  Google Scholar 

  • Gottsberger G, Silberbauer-Gottsberger I (2006a) Life in the cerrado: a South American tropical seasonal ecosystem. In: Origin, structure, dynamics and plant use, vol I. Reta, Ulm

  • Gottsberger G, Silberbauer-Gottsberger I (2006b) Life in the cerrado: a South American tropical seasonal ecosystem. In: Pollination and seed dispersal, vol II. Reta, Ulm

  • Gottsberger G, Silberbauer-Gottsberger I, Seymour RS, Dötterl S (2012) Pollination ecology of Magnolia ovata may explain the overall large flower size of the genus. Flora 207:107–118

    Article  Google Scholar 

  • Hesse M (2006) Conventional and novel modes of exine patterning in members of the Araceae—the consequences of ecological paradigm shifts? Protoplasma 228:145–149

    Article  PubMed  CAS  Google Scholar 

  • Jirovetz L, Buchbauer G, Shahabi M (2003) Aroma compounds of mango and papaya from Cameroon. Perf Flav 28:40–50

    CAS  Google Scholar 

  • Johne AB, Weissbecker B, Schütz S (2006) Volatile emissions from Aesculus hippocastanum induced by mining of larval stages of Cameraria ohridella influence oviposition by conspecific females. J Chem Ecol 32:2303–2319

    Article  PubMed  CAS  Google Scholar 

  • Kaiser R (1993) Vom Duft der Orchideen. Editiones Roche, Basel

    Google Scholar 

  • Kaiser R (1995) New or uncommon volatile compounds in floral scents. In: 13th International congress of flavours, fragrances and essential oils, Istanbul, p 34

  • Kaiser R (1997) New or uncommon volatile compounds in the most diverse natural scents. Revista Italiana Eppos 18:18–47

    Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Stáhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–200

    Article  Google Scholar 

  • Maia ACD, Schlindwein C, Navarro DAF, Gibernau M (2010) Pollination of Philodendron acutatum (Araceae) in the Atlantic forest of northeastern Brazil: a single scarab beetle species guarantees high fruit set. Intern J Plant Sci 171:740–748

    Article  Google Scholar 

  • Mayo SJ (1991) A revision of Philodendron subgenus Meconostigma (Araceae). Kew Bull 46:601–681

    Article  Google Scholar 

  • Mayo SJ, Bogner J, Boyce PC (1997) The genera of Araceae. Royal Bot Gard, Kew

    Google Scholar 

  • Mayo SJ, Bogner J, Boyce PC (1998) Araceae. In: Kubitzki K, Huber H, Rudall PJ, Stevens PS, Stützel T (eds) Flowering plants—monocotyledons. Springer, Berlin, pp 22–100

    Google Scholar 

  • Mumm R, Posthumus MA, Dicke M (2008) Significance of terpenoids in induced indirect plant defence against herbivorous arthropods. Plant Cell Environ 31:575–585

    Article  PubMed  CAS  Google Scholar 

  • Nagy KA, Odell DK, Seymour RS (1972) Temperature regulation by the inflorescence of Philodendron. Science 178:1195–1197

    Article  PubMed  CAS  Google Scholar 

  • Ohaus F (1955) Berichte über meine dritte entomologische Studienreise nach Südamerika (1926–27). Jahrb Verein Freunde der Univ. Mainz 1955:9–36

    Google Scholar 

  • Prance GT, Arias JR (1975) A study of the floral biology of Victoria amazonica (Peopp.) Sowerby (Nymphaeaceae). Acta Amazonica 5:109–139

    Google Scholar 

  • Schatz GE (1990) Some aspects of pollination biology in Central American forests. In: Bawa KS, Hadley M (eds) Reproductive ecology of tropical plants. Unesco, Paris, Parthenon Publ Group, Carnforth, pp 69–84

  • Schrottky C (1910) Die Befruchtung von Philodendron und Caladium durch einen Käfer (Erioscelis emarginata Mann.). Zeitschr wissensch Insektenbiol 6:67–68

    Google Scholar 

  • Seymour RS (1997) Plants that warm themselves. Sci Am 276:90–95

    Article  Google Scholar 

  • Seymour RS (1999) Pattern of respiration by intact inflorescences of the thermogenic arum lily Philodendron selloum. J Exp Bot 50:845–852

    CAS  Google Scholar 

  • Seymour RS (2004) Dynamics and precision of thermoregulatory responses of eastern skunk cabbage Symplocarpus foetidus. Plant Cell Environm 27:1014–1022

    Article  CAS  Google Scholar 

  • Seymour RS, Blaylock AJ (1999) Switching off the heater: influence of ambient temperature on thermoregulation by eastern skunk cabbage Symplocarpus foetidus. J Exp Bot 50:1525–1532

    CAS  Google Scholar 

  • Seymour RS, Gibernau M (2008) Respiration of thermogenic inflorescences of Philodendron melinonii: natural pattern and responses to experimental temperatures. J Exp Bot 59:1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Seymour RS, Matthews PGD (2006) The role of thermogenesis in the pollination biology of the Amazon waterlily Victoria amazonica. Ann Bot 98:1129–1135

    Article  PubMed  Google Scholar 

  • Seymour RS, Schultze-Motel P (1996) Thermoregulating lotus flowers. Nature 383:305

    Article  CAS  Google Scholar 

  • Seymour RS, Schultze-Motel P (1997) Heat-producing flowers. Endeavour 21:125–129

    Article  Google Scholar 

  • Seymour RS, Schultze-Motel P (1998) Physiological temperature regulation by flowers of the sacred lotus. Phil Trans R Soc London B 353:935–943

    Article  Google Scholar 

  • Seymour RS, Schultze-Motel P (1999) Respiration, temperature regulation and energetics of thermogenic inflorescences of the dragon lily Dracunculus vulgaris (Araceae). Proc R Soc London B 266:1975–1983

    Article  Google Scholar 

  • Seymour RS, Bartholomew GA, Barnhart MC (1983) Respiration and heat production by the inflorescence of Philodendron selloum Koch. Planta 157:336–343

    Article  Google Scholar 

  • Seymour RS, Barnhart MC, Bartholomew GA (1984) Respiratory gas exchange during thermogenesis in Philodendron selloum Koch. Planta 161:229–232

    Article  Google Scholar 

  • Seymour RS, Schultze-Motel P, Lamprecht I (1998) Heat production by sacred lotus flowers depends on ambient temperature, not light cycle. J Exp Bot 49:1213–1217

    CAS  Google Scholar 

  • Seymour RS, White CR, Gibernau M (2003) Heat reward for insect pollinators. Nature 426:243–244

    Article  PubMed  CAS  Google Scholar 

  • Seymour RS, White CR, Gibernau M (2009) Endothermy of dynastine scarab beetles (Cyclocephala colasi) associated with pollination biology of a thermogenic arum lily (Philodendron solimoesense). J Exp Biol 212:2960–2968

    Article  PubMed  Google Scholar 

  • Seymour RS, Silberbauer-Gottsberger I, Gottsberger G (2010) Respiration and temperature patterns in thermogenic flowers of Magnolia ovata under natural conditions in Brazil. Funct Plant Biol 37:870–878

    Article  Google Scholar 

  • Stensmyr MC, Urru I, Collu I, Celander M, Hansson BS, Angioy AM (2002) Rotting smell of dead-horse arum florets. Nature 420:625–626

    Article  PubMed  CAS  Google Scholar 

  • Surburgh H, Guentert M, Harder H (1993) Investigation of volatiles from flowers: analytical and olfactory aspects. In: Hopp R, Mori K (eds) Recent developments in flavor and fragrance chemistry. VCH, Weinheim, pp 103–121

    Google Scholar 

  • Walker DB, Gysi J, Sternberg L, Deniro MJ (1983) Direct respiration of lipids during heat production in the inflorescence of Philodendron selloum. Science 220:419–421

    Article  PubMed  CAS  Google Scholar 

  • Warming E (1883) Tropische Fragmente. I. Die Bestäubung von Philodendron bipinnatifidum Schott. Engler Bot Jahrb 4:328–340

    Google Scholar 

  • Webber AC (1996) Biologia floral, polinização e aspectos fenológicos de algumas Annonaceae na Amazônia Central. PhD Dissertation, Instituto Nacional de Pesquisas da Amazônia and Fundação Universidade do Amazonas, Manaus

Download references

Acknowledgments

This work was supported by the German Research Council (DFG) and the German Federal Ministry for Education and Research (BMBF). The first two authors additionally thank the authorities of their former university in Botucatu for support during the years of their employment (1968–1981). We greatly appreciate the cooperation of Silvia R. Machado of the Departamento de Botânica, Instituto de Biologia, Universidade Estadual Paulista, Campus de Botucatu. We are very thankful to Cristina Mattos and Edy de Lello Montenegro for hospitality and the possibility to study plants in their gardens, as well as to Carmen Regina Marcati, Luzia Gonçalves, José Angelo (Zico) Gonçalves, Oswaldo Rodrigues and Clemente José Campos for assistance in Botucatu and Pardinho. We are very thankful also to Helene Sommer and the late Franz Sommer, São Paulo, and their children Ingeborg and Wolfgang, who offered us their house in Bertioga and supported us and our studies in various generous ways. Ernestine and Hans Krüger in Indianópolis also very kindly hosted us and supported our studies. The late Graziela M. Barroso, Rio de Janeiro, Eduardo G. Gonçalves, Brasília and Thomas Croat, St. Louis, kindly identified the plant species and Brett C. Ratcliffe, Lincoln, the pollinating beetle species. Two anonymous reviewers kindly provided important advices to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Gottsberger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottsberger, G., Silberbauer-Gottsberger, I. & Dötterl, S. Pollination and floral scent differentiation in species of the Philodendron bipinnatifidum complex (Araceae). Plant Syst Evol 299, 793–809 (2013). https://doi.org/10.1007/s00606-013-0763-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0763-4

Keywords

Navigation