Skip to main content
Log in

Progress and problems in the assessment of flower morphology in higher-level systematics

  • Review
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Floral features used for characterization of higher-level angiosperm taxa (families, orders, and above) are assessed following a comparison of earlier (precladistic/premolecular) and current classifications. Cronquist (An integrated system of classification of flowering plants. Columbia University Press, New York, 1981) and APG (Angiosperm Phylogeny Group) (Bot J Linn Soc 161:105–121, 2009) were mainly used as the basis for this comparison. Although current circumscriptions of taxonomic groups (clades) are largely based on molecular markers, it is also important to morphologically characterize these new groups, as, in many cases, they are completely novel assemblages, especially at the level of orders and above. Features used in precladistic/premolecular classifications are often much more evolutionarily plastic than earlier assumed. A number of earlier neglected but potentially useful features at higher levels are discussed based on our own and other recent studies. As certain features tend to evolve repeatedly in a clade, it appears that apomorphic features in the strict sense are less helpful to characterize larger clades than earlier assumed, and rather apomorphic tendencies of features are more useful at this level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert VA, Williams SE, Chase MW (1992) Carnivorous plants: phylogeny and structural evolution. Science 257:1491–1495

    Article  PubMed  CAS  Google Scholar 

  • Alford MH (2006) Gerrardinaceae: a new family of African flowering plants unresolved among Brassicales, Huerteales, Malvales, and Sapindales. Taxon 55:959–964

    Article  Google Scholar 

  • Anderberg AA, Zhang X (2002) Phylogenetic relationships of Cyrillaceae and Clethraceae (Ericales) with special emphasis on the genus Purdiaea Planch. Org Divers Evol 2:127–137

    Article  Google Scholar 

  • Anderberg AA, Rydin C, Källersjö M (2002) Phylogenetic relationships in the order Ericales s.l.: analyses of molecular data from five genes from the plastid and mitochondrial genomes. Am J Bot 89:677–687

    Article  PubMed  CAS  Google Scholar 

  • APG (Angiosperm Phylogeny Group) (1998) An ordinal classification for the families of flowering plants. Ann Mo Bot Gard 85:531–553

    Article  Google Scholar 

  • APG (Angiosperm Phylogeny Group) (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Bachelier JB, Endress PK (2008) Floral structure of Kirkia (Kirkiaceae) and its position in Sapindales. Ann Bot 102:539–550

    Article  PubMed  Google Scholar 

  • Bachelier JB, Endress PK (2009) Comparative floral morphology and anatomy of Anacardiaceae and Burseraceae (Sapindales), with a special focus on gynoecium structure and evolution. Bot J Linn Soc 159:499–571

    Article  Google Scholar 

  • Bartlett ME, Specht CD (2010) Evidence for the involvement of GLOBOSA-like gene duplications and expression divergence in the evolution of floral morphology in the Zingiberales. New Phytol 187:521–541

    Article  PubMed  CAS  Google Scholar 

  • Baum-Leinfellner H (1953) Über unifaziale Griffel und Narben. Planta 42:452–460

    Article  Google Scholar 

  • Bayer C, Fay MF, de Bruijn AJ, Savolainen V, Morton CM, Kubitzki K, Alverson WS, Chase MW (1999) Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpB and rbcL DNA sequences. Bot J Linn Soc 129:267–303

    Google Scholar 

  • Behnke H-D (1997) Sarcobataceae—a new family of Caryophyllales. Taxon 46:495–507

    Article  Google Scholar 

  • Bello MA, Hawkins JA, Rudall PJ (2007) Floral morphology and development in Quillajaceae and Surianaceae (Fabales), the species-poor relatives of Leguminosae and Polygalaceae. Ann Bot 100:1491–1505

    Article  PubMed  CAS  Google Scholar 

  • Bello MA, Bruneau A, Forest F, Hawkins JA (2009) Elusive relationships within order Fabales: phylogenetic analyses using matK and rbcL sequence data. Syst Bot 34:102–114

    Article  Google Scholar 

  • Bello MA, Hawkins JA, Rudall PJ (2010) Floral ontogeny in Polygalaceae and its bearing on the homologies of keeled flowers in Fabales. Int J Plant Sci 171:482–498

    Article  Google Scholar 

  • Bernhard A (1999) Flower structure, development, and systematics in Passifloraceae and in Abatia (Flacourtiaceae). Int J Plant Sci 160:135–150

    Article  Google Scholar 

  • Bernhard A, Endress PK (1999) Androecial development and systematics in Flacourtiaceae s.l. Plant Syst Evol 215:141–155

    Article  Google Scholar 

  • Blarer A, Nickrent D, Endress PK (2004) Floral structure and systematics in Apodanthaceae (Rafflesiales). Plant Syst Evol 245:119–142

    Article  Google Scholar 

  • Brockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis PS, Soltis DE (2009) Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. Int J Plant Sci 171:185–198

    Google Scholar 

  • Brückner C (2000) Clarification of the carpel number in Papaverales, Capparales, and Berberidaceae. Bot Rev 66:155–307

    Article  Google Scholar 

  • Cameron KM (2003) On the phylogenetic position of the New Caledonian endemic families Paracryphiaceae, Oncothecaceae, and Strasburgeriaceae: a comparison of molecules and morphology. Bot Rev 68:428–443

    Article  Google Scholar 

  • Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedrén M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80:528–580

    Article  Google Scholar 

  • Chase MW, Soltis DE, Soltis PS, Rudall PJ, Fay MF, Hahn WH, Sullivan S, Joseph J, Molvray M, Kores PJ, Givnish TJ, Sytsma KJ, Pires JC (2000) Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 3–16

    Google Scholar 

  • Chen L, Ren Y, Endress PK, Tian XH, Zhang XH (2007) Floral development of Tetracentron sinense (Trochodendraceae) and its systematic significance. Plant Syst Evol 264:183–193

    Article  Google Scholar 

  • Christenhusz MJM, Fay MF, Clarkson JJ, Gasson P, Morales-Can J, Jiménez-Barrios JB, Chase MW (2010) Petenaeaceae, a new angiosperm family in Huerteales with a distant relationship to Gerrardina (Gerrardinaceae). Bot J Linn Soc 164:16–25

    Article  Google Scholar 

  • Corner EJH (1946) Centrifugal stamens. J Arnold Arbor 27:423–437

    Google Scholar 

  • Crane PR, Pedersen KR, Friis EM, Drinnan AN (1993) Early Cretaceous (early to middle Albian) platanoid inflorescences associated with Sapindopsis leaves from the Potomac Group of eastern North America. Syst Bot 91:1666–1682

    Google Scholar 

  • Crane PR, Herendeen PS, Friis EM (2004) Fossils and plant phylogeny. Am J Bot 91:1683–1699

    Article  PubMed  Google Scholar 

  • Cronquist A (1957) Outline of a new system of families and orders of dicotyledons. Bull Jard Bot État Bruxelles 27:13–40

    Article  Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Cuénoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW (2002) Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Am J Bot 89:132–144

    Article  PubMed  Google Scholar 

  • Davis CC, Anderson WR (2010) A complete generic phylogeny of Malpighiaceae inferred from nucleotide sequence data and morphology. Am J Bot 97:2031–2048

    Article  PubMed  Google Scholar 

  • Davis CC, Endress PK, Baum DA (2008) The evolution of floral gigantism. Curr Opin Plant Biol 11:49–57

    Article  PubMed  Google Scholar 

  • Dickison WC (1972) Observations on the floral morphology of some species of Saurauia, Actinidia, and Clematoclethra. J Elisha Mitchell Sci Soc 88:43–54

    Google Scholar 

  • Doweld A (2001) Prosyllabus Tracheophytorum. Tentamen systematis plantarum vascularium (Tracheophyta). GEOS, Moscow

    Google Scholar 

  • Doweld A, Reveal JL (2008) New suprageneric names for vascular plants. Phytologia 90:416–417

    Google Scholar 

  • Doyle JA, Endress PK (2000) Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int J Plant Sci 161:S121–S153

    Article  CAS  Google Scholar 

  • Doyle JA, Endress PK (2010) Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. J Syst Evol 48:1–35

    Article  Google Scholar 

  • Doyle JA, Endress PK (2011) Tracing the evolutionary diversification of the flower in basal angiosperms. In: Wanntorp L, Ronse De Craene LP (eds) Flowers on the tree of life. Systematics Association Special Volume Series, vol 80. Cambridge University Press, Cambridge, pp 88–119

  • Eckardt T (1976) Classical morphological features of of centrospermous families. Plant Syst Evol 126:5–25

    Article  Google Scholar 

  • Eckert G (1966) Entwicklungsgeschichtliche und blütenanatomische Untersuchungen zum Problem der Obdiplostemonie. Bot Jahrb Syst 85:523–604

    Google Scholar 

  • Endress PK (1967) Systematische Studie über die verwandtschaftlichen Beziehungen zwischen den Hamamelidaceen und Betulaceen. Bot Jahrb Syst 87:431–525

    Google Scholar 

  • Endress PK (1977) Evolutionary trends in the Hamamelidales–Fagales group. Plant Syst Evol Suppl 1:321–347

    Google Scholar 

  • Endress PK (1982) Syncarpy and alternative modes of escaping disadvantages of apocarpy in primitive angiosperms. Taxon 31:48–52

    Article  Google Scholar 

  • Endress PK (1986) Floral structure, systematics and phylogeny in Trochodendrales. Ann Mo Bot Gard 73:297–324

    Article  Google Scholar 

  • Endress PK (1987) Floral phyllotaxis and floral evolution. Bot Jahrb Syst 108:417–438

    Google Scholar 

  • Endress PK (1989a) A suprageneric taxonomic classification of the Hamamelidaceae. Taxon 38:371–376

    Article  Google Scholar 

  • Endress PK (1989b) Aspects of evolutionary differentiation of the Hamamelidaceae and the Lower Hamamelididae. Plant Syst Evol 162:193–211

    Article  Google Scholar 

  • Endress PK (1989c) Chaotic floral phyllotaxis and reduced perianth in Achlys (Berberidaceae). Bot Acta 102:159–163

    Google Scholar 

  • Endress PK (1994a) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge

    Google Scholar 

  • Endress PK (1994b) Shapes, sizes and evolutionary trends in stamens of Magnoliidae. Bot Jahrb Syst 115:429–460

    Google Scholar 

  • Endress PK (1997a) Evolutionary biology of flowers: prospects for the next century. In: Iwatsuki K, Raven PH (eds) Evolution and diversification of land plants. Springer, Tokyo, pp 99–119

    Google Scholar 

  • Endress PK (1997b) Relationships between floral organization, architecture and pollination mode in Dillenia (Dilleniaceae). Plant Syst Evol 206:99–118

    Article  Google Scholar 

  • Endress PK (2002) Morphology and angiosperm systematics in the molecular era. Bot Rev 68:545–570

    Article  Google Scholar 

  • Endress PK (2003) What should a “complete” morphological phylogenetic analysis entail? In: Stuessy TF, Hörandl E, Mayer V (eds) Deep morphology: toward a renaissance of morphology in plant systematics. Regnum Vegetabile, vol. 141. Gantner, Ruggell, pp 131–164

  • Endress PK (2005) Links between embryology and evolutionary floral morphology. Curr Sci 89:749–754

    Google Scholar 

  • Endress PK (2006) Angiosperm floral evolution: Morphological developmental framework. Adv Bot Res 44:1–61

    Article  Google Scholar 

  • Endress PK (2008) The whole and the parts: relationships between floral architecture and floral organ shape, and their repercussions on the interpretation of fragmentary floral fossils. Ann Mo Bot Gard 95:101–120

    Article  Google Scholar 

  • Endress PK (2010a) Flower structure and trends of evolution in eudicots and their major subclades. Ann Mo Bot Gard 97:541–583

    Article  Google Scholar 

  • Endress PK (2010b) Synorganisation without organ fusion in the flowers of Geranium robertianum (Geraniaceae) and its not so trivial obdiplostemony. Ann Bot 106:687–695

    Article  PubMed  Google Scholar 

  • Endress PK (2011a) Angiosperm ovules: diversity, development, evolution. Ann Bot 107:1465–1489

    Article  PubMed  Google Scholar 

  • Endress PK (2011b) Changing views of flower evolution and new questions. In: Wanntorp L, Ronse De Craene LP (eds) Flowers on the tree of life. Systematics Association Special Volume Series, vol 80. Cambridge University Press, Cambridge, pp 120–141

  • Endress PK (2011c) Evolutionary diversification of the flowers in angiosperms. Am J Bot 98:370–396

    Article  PubMed  Google Scholar 

  • Endress PK, Doyle JA (2007) Floral phyllotaxis in basal angiosperms—development and evolution. Curr Opin Plant Biol 10:52–57

    Article  PubMed  Google Scholar 

  • Endress PK, Doyle JA (2009) Reconstructing the ancestral flower and its initial specializations. Am J Bot 96:22–66

    Article  PubMed  Google Scholar 

  • Endress PK, Friis EM (1991) Archamamelis, hamamelidalean flowers from the Upper Cretaceous of Sweden. Plant Syst Evol 175:101–114

    Article  Google Scholar 

  • Endress PK, Friis EM (2006) Rosids—reproductive structures, fossil and extant, and their bearing on deep relationships. Introduction. Plant Syst Evol 260:83–85

    Google Scholar 

  • Endress PK, Hufford LD (1989) The diversity of stamen structures and dehiscence patterns among Magnoliidae. Bot J Linn Soc 100:45–85

    Article  Google Scholar 

  • Endress PK, Igersheim A (1999) Gynoecium diversity and systematics of the basal eudicots. Bot J Linn Soc 130:305–393

    Article  Google Scholar 

  • Endress PK, Igersheim A (2000) Gynoecium structure and evolution in basal angiosperms. Int J Plant Sci 161:S211–S223

    Article  Google Scholar 

  • Endress PK, Matthews ML (2006a) Elaborate petals and staminodes in eudicots: structure, function, evolution. Org Divers Evol 6:257–293

    Article  Google Scholar 

  • Endress PK, Matthews ML (2006b) First steps towards a floral structural characterization of the major rosid subclades. Plant Syst Evol 260:223–251

    Google Scholar 

  • Endress PK, Stumpf S (1991) The diversity of stamen structures in lower Rosidae (Rosales, Fabales, Proteales, Sapindales). Bot J Linn Soc 107:217–293

    Article  Google Scholar 

  • Endress PK, Jenny M, Fallen ME (1983) Convergent elaboration of apocarpous gynoecia in higher advanced dicotyledons (Sapindales, Malvales, Gentianales). Nord J Bot 3:292–300

    Article  Google Scholar 

  • Endress PK, Baas P, Gregory M (2000) Systematic morphology and anatomy: 50 years of progress. Taxon 49:401–434

    Article  Google Scholar 

  • Engler A (1925) Parietales. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien (edn 2) 21. Engelmann, Leipzig, pp 1–6

    Google Scholar 

  • Engler A (1930) Saxifragaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien (edn 2) 18 a. Engelmann, Leipzig, pp 74–226

    Google Scholar 

  • Engler A (1931) Rutaceae. In: Engler A, Prantl K (eds) Die natürlichen Planzenfamilien (edn 2) 19 a. Engelmann, Leipzig, pp 187–359

    Google Scholar 

  • Engler A, Krause K (1931) Dichapetalaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien (edn 2) 19c. Engelmann, Leipzig, pp 1–11

    Google Scholar 

  • Erbar C, Leins P (1996) Distribution of the character states “early” and “late sympetaly” within the “Sympetalae Tetracyclicae” and presumably related groups. Bot Acta 109:427–440

    Google Scholar 

  • Erbar C, Leins P (2011) Synopsis of some important, non-DNA character states in the asterids with special reference to sympetaly. Plant Divers Evol 129:93–123

    Article  Google Scholar 

  • Filipowicz N, Renner SS (2010) The worldwide holoparasitic Apodanthaceae confidently placed in the Cucurbitales by nuclear and mitochondrial gene trees. BMC Evol Biol 10:219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Friis EM, Crane PR, Pedersen KR (1988) Reproductive structures of Cretaceous Platanaceae. Biol Skr Danske Vidensk Selsk 31:1–55

    Google Scholar 

  • Friis EM, Pedersen KR, Schönenberger J (2006) Normapolles plants: a prominent component of the Cretaceous rosid diversification. Plant Syst Evol 260:107–140

    Google Scholar 

  • Friis EM, Crane PR, Pedersen KR (2011) Early flowers and angiosperm evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gibbs LS (1917) Dutch N.W. New Guinea: A contribution to the phytogeography and flora of the Arfak Mountains & c. Taylor & Frances, London

    Book  Google Scholar 

  • González F, Rudall PJ (2010) Flower and fruit characters in the early-divergent lamiid family Metteniusaceae, with particular reference to the evolution of pseudomonomery. Am J Bot 97:191–206

    Article  PubMed  Google Scholar 

  • González F, Betancur J, Maurin O, Freudenstein JV, Chase MW (2007) Metteniusaceae, an early-diverging family in the lamiid clade. Taxon 56:795–800

    Article  Google Scholar 

  • Hallier H (1896) Betrachtungen über die Verwandtschaftsbeziehungen der Ampelideen und anderer Pflanzenfamilien. Natuurk Tijdschr Ned-Indië III 56:300–331

    Google Scholar 

  • Hamann U (1975) Neue Untersuchungen zur Embryologie und Systematik der Centrolepidaceae. Bot Jahrb Syst 96:154–191

    Google Scholar 

  • Hamann U (1976) Hydatellaceae—a new family of Monocotyledoneae. N Z J Bot 14:193–196

    Google Scholar 

  • Harms H (1940) Meliaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien (edn 2) 19 bI. Engelmann, Leipzig, pp 1–172

    Google Scholar 

  • Hartl D (1962) Die morphologische Natur und die Verbreitung des Apikalseptums. Analyse einer bisher unbekannten Gestaltungsmöglichkeit des Gynoeceums. Beitr Biol Pfl 37:241–330

    Google Scholar 

  • Hayes V, Schneider EL, Carlquist S (2000) Floral development of Nelumbo nucifera (Nelumbonaceae). Int J Plant Sci 161:S183–S191

    Article  Google Scholar 

  • Hiepko P (1965) Das zentrifugale Androeceum der Paeoniaceae. Ber Deutsch Bot Ges 77:427–435

    Google Scholar 

  • Hoogland RD, Reveal JL (2005) Index nominum familiarum plantarum vascularium. Bot Rev 71:1–291

    Google Scholar 

  • Hufford L (1992) Rosidae and their relationships to other nonmagnoliid dicotyledons: a phylogenetic analysis using morphological and chemical data. Ann Mo Bot Gard 79:218–248

    Article  Google Scholar 

  • Hufford L (1995) Patterns of ontogenetic evolution in perianth diversification of Besseya (Scrophulariaceae). Am J Bot 82:655–680

    Article  Google Scholar 

  • Hufford LD (1990) Androecial development and the problem of monophyly of Loasaceae. Can J Bot 68:402–419

    Article  Google Scholar 

  • Hufford LD, Endress PK (1989) The diversity of anther structures and dehiscence patterns among Hamamelididae. Bot J Linn Soc 99:301–346

    Article  Google Scholar 

  • Hufford L, Moody ML, Soltis DE (2001) A phylogenetic analysis of Hydrangeaceae based on sequences of the plastid gene matK and their combination with rbcL and morphological data. Int J Plant Sci 162:835–846

    Article  CAS  Google Scholar 

  • Iltis HH (1999) Setchellanthaceae (Capparales), a new family for a relictual, glucosinolate-producing endemic of the Mexican desert. Taxon 48:257–275

    Article  Google Scholar 

  • Jäger-Zürn I (1966) Infloreszenz- und blütenmorphologische, sowie embryologische Untersuchungen an Myrothamnus Welw. Beitr Biol Pfl 42:241–271

    Google Scholar 

  • Janka H, von Balthazar M, Alverson WS, Baum DA, Semir J, Bayer C (2008) Structure, development and evolution of the androecium in Adansonieae (core Bombacoideae, Malvaceae s.l.). Plant Syst Evol 275:69–91

    Article  Google Scholar 

  • Jérémie J (1997) Sphenostemonaceae. In: Morat P (ed) Flore de la Nouvelle Calédonie 21. Muséum National d’Histoire Naturelle, Paris, pp 3–21

    Google Scholar 

  • Jérémie J (2008) Paracryphiaceae. Species Plantarum. Flora of the world, vol 13. Conservatoire et Jardin botaniques de la Ville de Genève, Geneva, pp 1–7

  • Jian S, Soltis PS, Gitzendanner MA, Moore MJ, Li R, Hendry TA, Qiu Y-L, Dhringa A, Bell CD, Soltis DE (2008) Resolving an ancient, rapid radiation in Saxifragales. Syst Biol 57:38–57

    Article  PubMed  CAS  Google Scholar 

  • Karehed J (2001) Multiple origin of the tropical forest tree family Icacinaceae. Am J Bot 88:2259–2274

    Article  PubMed  CAS  Google Scholar 

  • Karol KG, Rodman JE, Conti E, Sytsma KJ (1999) Nucleotide sequence of rbcL and phylogenetic relationships of Setchellanthus caeruleus (Setchellanthaceae). Taxon 48:303–315

    Article  Google Scholar 

  • Karrer AB (1991) Blütenentwicklung und systematische Stellung der Papaveraceae und Capparaceae. Doctoral dissertation, University of Zurich. ADAG, Zurich

  • Kubitzki K, Kallunki JA, Duretto M, Wilson PG (2011) Rutaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 10. Springer, Berlin, pp 276–356

    Google Scholar 

  • Leins P (1975) Die Beziehungen zwischen multistaminaten und einfachen Androeceen. Bot Jahrb Syst 96:231–237

    Google Scholar 

  • Leins P, Erbar C (2010) Flower and fruit. Morphology, ontogeny, phylogeny, function and ecology. Schweizerbart, Stuttgart

    Google Scholar 

  • Leins P, Metzenauer G (1979) Entwicklungsgeschichtliche Untersuchungen an Capparis-Blüten. Bot Jahrb Syst 100:542–554

    Google Scholar 

  • Leins P, Schwitalla S (1985) Studien an Cactaceen-Blüten I. Einige Bemerkungen zur Blütenentwicklung von Pereskia. Beitr Biol Pflanzen 60:313–323

    Google Scholar 

  • Link DA (1992) The floral nectaries of the Geraniales and their systematic implications VI. Ixonanthaceae Exell & Mendonça. Bot Jahrb Syst 114:81–90

    Google Scholar 

  • Losos JB (2011) Seeing the forest for the trees: the limitations of phylogenies in comparative biology. Am Nat 177:709–727

    Article  PubMed  Google Scholar 

  • Mabberley DJ (2011) Meliaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 10. Springer, Berlin, pp 185–211

    Google Scholar 

  • Magallón S (2007) From fossils to molecules: phylogeny and the core eudicot floral groundplan in Hamamelidoideae (Hamamelidaceae, Saxifragales). Syst Bot 32:317–347

    Article  Google Scholar 

  • Magallón S, Herendeen PS, Crane PR (1997) Quadriplatanus georgianus gen. et sp. nov.: staminate and pistillate platanaceous flowers from the Late Cretaceous (Coniacian-Santonian of Georgia, USA). Int J Plant Sci 158:373–394

    Article  Google Scholar 

  • Magallón S, Herendeen PS, Crane PR (2001) Androdecidua endressii gen. et sp. nov., from the Late Cretaceous of Georgia (United States): further floral diversity in Hamamelidoideae (Hamamelidaceae). Int J Plant Sci 162:963–983

    Article  Google Scholar 

  • Magallón-Puebla S, Herendeen PS, Endress PK (1996) Allonia decandra: floral remains of the tribe Hamamelideae (Hamamelidaceae) from Campanian strata of Southeastern U.S.A. Plant Syst Evol 202:177–198

    Article  Google Scholar 

  • Malécot V, Nickrent DL (2008) Molecular phylogenetic relationships of Olacaceae and related Santalales. Syst Bot 33:97–106

    Article  Google Scholar 

  • Manos PS, Steele KP (1997) Phylogenetic analysis of “higher” Hamamelididae based on plastid sequence data. Am J Bot 84:1407–1419

    Article  PubMed  CAS  Google Scholar 

  • Matthews ML, Endress PK (2002) Comparative floral structure and systematics in Oxalidales (Oxalidaceae, Connaraceae, Cephalotaceae, Brunelliaceae, Cunoniaceae, Elaeocarpaceae, Tremandraceae). Bot J Linn Soc 140:321–381

    Article  Google Scholar 

  • Matthews ML, Endress PK (2004) Comparative floral structure and systematics in Cucurbitales (Corynocarpaceae, Coriariaceae, Datiscaceae, Tetramelaceae, Begoniaceae, Cucurbitaceae, Anisophyllaceae). Bot J Linn Soc 145:129–185

    Article  Google Scholar 

  • Matthews ML, Endress PK (2005a) Comparative floral structure and systematics in Celastrales (Celastraceae, Parnassiaceae, Lepidobotryaceae). Bot J Linn Soc 149:129–194

    Article  Google Scholar 

  • Matthews ML, Endress PK (2005b) Comparative floral structure and systematics in Crossosomatales (Crossosomataceae, Stachyuraceae, Staphyleaceae, Aphloiaceae, Geissolomataceae, Ixerbaceae, Strasburgeriaceae). Bot J Linn Soc 147:1–46

    Article  Google Scholar 

  • Matthews ML, Endress PK (2006) Floral structure and systematics in four orders of rosids, including a broad survey of floral mucilage cells. Plant Syst Evol 260:199–221

    Google Scholar 

  • Matthews ML, Endress PK (2008) Comparative floral structure and systematics in Chrysobalanaceae s.l. (Chrysobalanaceae, Dichapetalaceae, Euphroniaceae, Trigoniaceae; Malpighiales). Bot J Linn Soc 157:249–309

    Article  Google Scholar 

  • Matthews ML, Endress PK (2011) Comparative floral structure and systematics in Rhizophoraceae, Erythroxylaceae, and the potentially related Ctenolophonaceae, Linaceae, Irvingiaceae, and Caryocaraceae (Malpighiales). Bot J Linn Soc 166:331–416

    Article  Google Scholar 

  • Matthews ML, Endress PK, Schönenberger J, Friis EM (2001) A comparison of floral structures of Anisophylleaceae and Cunoniaceae and the problem of their systematic position. Ann Bot 88:439–455

    Article  Google Scholar 

  • Mayr B (1969) Ontogenetische Studien an Myrtales-Blüten. Bot Jahrb Syst 89:210–271

    Google Scholar 

  • Merino Suter D, Forster PI, Endress PK (2006) Female flowers and systematic position of Picrodendraceae (Euphorbiaceae s.l., Malpighiales). Plant Syst Evol 261:187–215

    Article  Google Scholar 

  • Merxmüller H, Leins P (1967) Die Verwandtschaftsbeziehungen der Kreuzblütler und Mohngewächse. Bot Jahrb Syst 86:113–129

    Google Scholar 

  • Nandi OI (1998a) Floral development and systematics of Cistaceae. Plant Syst Evol 212:107–134

    Article  Google Scholar 

  • Nandi OI (1998b) Ovule and seed anatomy of Cistaceae and related Malvanae. Plant Syst Evol 209:239–264

    Article  Google Scholar 

  • Nandi OI, Chase MW, Endress PK (1998) A combined cladistic analysis of angiosperms using rbcL and nonmolecular data sets. Ann Mo Bot Gard 85:137–212

    Article  Google Scholar 

  • Nickrent D, Malécot V, Vidal-Russell R, Der JP (2010) A revised classification of Santalales. Taxon 59:538–558

    Google Scholar 

  • Nuraliev MS, Oskolski AA, Sokoloff DD, Remizowa MV (2010) Flowers of Araliaceae: structural diversity, developmental and evolutionary aspects. Plant Div Evol 128:247–268

    Article  Google Scholar 

  • Nyffeler R, Eggli U (2010) Disintegrating Portulacaceae: a new familial classification of the suborder Portulacineae (Caryophyllales) based on molecular and morphological data. Taxon 59:227–240

    Google Scholar 

  • Oh SH, Potter D (2006) Description and phylogenetic position of a new angiosperm family, Guamatelaceae, inferred from chloroplast rbcL, atpB, and matK sequences. Syst Bot 31:730–738

    Article  Google Scholar 

  • Pax F, Hoffmann K (1931) Euphorbiaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien (edn 2) 19c. Engelmann, Leipzig, pp 11–240

    Google Scholar 

  • Prenner G, Box MS, Cunniff J, Rudall PJ (2008) The branching stamens of Ricinus and the homologies of the angiosperm stamen fascicle. Int J Plant Sci 169:735–744

    Article  Google Scholar 

  • Qiu Y-L, Chase MW, Hoot SB, Conti E, Crane PR, Sytsma KJ, Parks CR (1998) Phylogenetics of the Hamamelidae and their allies: parsimony analyses of nucleotide sequences of the plastid gene rbcL. Int J Plant Sci 159:891–905

    CAS  Google Scholar 

  • Qiu Y-L, Li L, Wang B, Xue J-Y, Hendry TA, Li R-Q, Brown JW, Liu Y, Geordan T, Chen Z-D (2010) Angiosperm phylogeny inferred from sequences of four mitochondrial genes. J Syst Evol 48:391–425

    Article  Google Scholar 

  • Remizowa MV, Sokoloff DD, Rudall PJ (2010) Evolutionary history of the monocot flower. Ann Mo Bot Gard 97:617–645

    Article  Google Scholar 

  • Ren Y, Li H-F, Zhao L, Endress PK (2007) Floral morphogenesis in Euptelea (Eupteleaceae, Ranunculales). Ann Bot 100:185–193

    Article  PubMed  Google Scholar 

  • Ren Y, Chang H-L, Endress PK (2010) Floral development in Anemoneae (Ranunculaceae). Bot J Linn Soc 162:77–100

    Article  Google Scholar 

  • Reuter K (1926) Die Phylogenie der Parietales. Bot Arch 16:118–217

    Google Scholar 

  • Reveal JL (1993) New ordinal names for extant vascular plants. Phytologia 74:173–177

    Google Scholar 

  • Reveal JL (2011) Summary of recent systems of angiosperm classification. Kew Bull 66:1–44

    Article  Google Scholar 

  • Reveal JL, Chase MW (2011) APG III: bibliographical information and synonymy of Magnoliidae. Phytotaxa 19:71–134

    Google Scholar 

  • Ritterbusch A (1991) Morphologisches Beschreibungsmodell tubiflorer Kronen, ein Beitrag zur Terminologie und Morphologie der Asteriden-Blüte. Bot Jahrb Syst 112:329–345

    Google Scholar 

  • Rodman J, Karol KG, Price RA, Sytsma KJ (1996) Molecules, morphology, and Dahlgren’s expanded order Capparales. Syst Bot 21:289–307

    Article  Google Scholar 

  • Rohweder O (1963) Anatomische und histogenetische Untersuchungen an Laubsprossen und Blüten der Commelinaceen. Bot Jahrb Syst 82:1–99

    Google Scholar 

  • Ronse Decraene LP (1989) Floral development of Cochlospermum tinctorium and Bixa orellana with special emphasis on the androecium. Am J Bot 76:1344–1359

    Article  Google Scholar 

  • Ronse De Craene LP (2008) Homology and evolution of petals in the core eudicots. Syst Bot 33:301–325

    Article  Google Scholar 

  • Ronse De Craene LP (2010) Floral diagrams. An aid to understanding flower morphology and evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ronse De Craene LP, Haston E (2006) The systematic relationships of glucosinolate-producing plants and related families: a cladistic investigation based on morphological and molecular characters. Bot J Linn Soc 151:453–494

    Article  Google Scholar 

  • Ronse Decraene LP, Smets EF (1991) The impact of receptacular growth on polyandry in the Myrtales. Bot J Linn Soc 105:257–269

    Article  Google Scholar 

  • Ronse Decraene LP, Smets EF (1992) Complex polyandry in the Magnoliatae, definition, distribution and systematic value. Nord J Bot 12:621–649

    Article  Google Scholar 

  • Ronse Decraene LP, Smets EF (1993) The distribution and systematic relevance of the androecial character polymery. Bot J Linn Soc 113:285–350

    Article  Google Scholar 

  • Ronse Decraene LP, Smets EF (1995) The distribution and systematic relevance of the androecial character oligomery. Bot J Linn Soc 118:193–247

    Google Scholar 

  • Ronse Decraene LP, Smets EF (1999a) Similarities in floral ontogeny and anatomy between the genera Francoa (Francoaceae) and Greyia (Greyiaceae). Int J Plant Sci 160:377–393

    Article  Google Scholar 

  • Ronse Decraene LP, Smets EF (1999b) The floral development and anatomy of Carica papaya (Caricaceae). Can J Bot 77:582–598

    Google Scholar 

  • Ronse De Craene LP, Wanntorp L (2006) Evolution of floral characters in Gunnera (Gunneraceae). Syst Bot 31:671–688

    Article  Google Scholar 

  • Ronse Decraene LP, Linder HP, Smets EF (2000) The questionable relationship of Montinia (Montiniaceae): evidence from a floral ontogenetic and anatomical study. Am J Bot 87:1408–1424

    Article  Google Scholar 

  • Ronse De Craene LP, Linder HP, Dlamini T, Smets EF (2001) Evolution and development of floral diversity of Melianthaceae, an enigmatic Southern African family. Int J Plant Sci 162:59–82

    Article  Google Scholar 

  • Ross R (1982) Initiation of stamens, carpels, and receptacle in the Cactaceae. Am J Bot 69:369–379

    Article  Google Scholar 

  • Rudall PJ (2010) All in a spin: centrifugal organ formation and floral patterning. Curr Opin Plant Biol 13:108–114

    Article  PubMed  Google Scholar 

  • Rudall PJ, Bateman RM (2006) Morphological phylogenetic analysis of Pandanales: testing contrasting hypotheses of floral evolution. Syst Bot 31:223–238

    Article  Google Scholar 

  • Rudall PJ, Sokoloff DD, Remizowa MV, Conran JG, Davis JI, Macfarlane TD, Stevenson DW (2007) Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as a early-divergent angiosperm lineage. Am J Bot 94:1073–1092

    Article  PubMed  Google Scholar 

  • Ruhfel BR, Bittrich V, Bove CP, Gustafsson MHG, Philbrick CT, Rutishauser R, Xi Z, Davis CC (2011) Phylogeny of the clusioid clade (Malpighiales): evidence from the plastid and mitochondrial genomes. Am J Bot 98:306–325

    Article  PubMed  Google Scholar 

  • Rutishauser R, Wanntorp L, Pfeifer E (2004) Gunnera herteri—developmental morphology of a dwarf from Uruguay and S Brazil (Gunneraceae). Plant Syst Evol 248:219–241

    Article  Google Scholar 

  • Saarela JM, Rai HS, Doyle JA, Endress PK, Mathews S, Marchant AD, Briggs BG, Graham SW (2007) Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446:312–315

    Article  PubMed  CAS  Google Scholar 

  • Sauer H (1933) Blüte und Frucht der Oxalidaceen, Linaceen, Geraniaceen, Tropaeolaceen und Balsaminaceen. Vergleichend-entwicklungsgeschichtliche Untersuchungen. Planta 19:417–481

    Article  Google Scholar 

  • Savolainen V, Fay MF, Albach DC, Backlund A, van der Bank M, Cameron KM, Johnson SA, Lledó MD, Pintaud J-C, Powell M, Sheahan MC, Soltis DE, Soltis PS, Weston P, Whitten WM, Wurdack KJ, Chase MW (2000) Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences. Kew Bull 55:257–309

    Article  Google Scholar 

  • Schaefer H, Renner SS (2011) Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon 60:122–138

    Google Scholar 

  • Schäferhoff B, Müller KF, Borsch T (2010) Caryophyllales phylogenetics: disentangling Phytolaccaceae and Molluginaceae and description of Microteaceae as a new isolated family. Willdenowia 39:209–228

    Article  Google Scholar 

  • Schlechter R (1906) Beiträge zur Kenntnis der Flora von Neu-Kaledonien. Bot Jahrb Syst 39:1–274

    Google Scholar 

  • Schöffel K (1932) Untersuchungen über den Blütenbau der Ranunculaceen. Planta 17:315–371

    Article  Google Scholar 

  • Schönenberger J (2009) Comparative floral structure and systematics of Fouquieriaceae and Polemoniaceae (Ericales). Int J Plant Sci 170:1132–1167

    Article  Google Scholar 

  • Schönenberger J, Conti E (2003) Molecular phylogeny and floral evolution in Penaeaceae, Oliniaceae, Rhynchocalycaceae, and Alzateaceae (Myrtales). Am J Bot 90:292–309

    Article  Google Scholar 

  • Schönenberger J, von Balthazar M (2006) Reproductive structures and phylogenetic framework of the rosids—progress and prospects. Plant Syst Evol 260:87–106

    Google Scholar 

  • Schönenberger J, Grenhagen (2005) Early floral development and androecium organization in Fouquieriaceae (Ericales). Plant Syst Evol 254:233-249

  • Schönenberger J, Anderberg AA, Sytsma KJ (2005) Molecular phylogenetics and patterns of floral evolution in the Ericales. Int J Plant Sci 166:265–288

    Article  Google Scholar 

  • Schönenberger J, von Balthazar M, Sytsma KJ (2010) Diversity and evolution of floral structure among early diverging lineages in the Ericales. Phil Trans Roy Soc Lond B 365:437–448

    Article  Google Scholar 

  • Scotland RW (2011) What is parallelism? Evol Dev 13:214–227

    Article  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Google Scholar 

  • Soltis DE, Soltis PS, Endress PK, Chase MW (2005) Phylogeny and evolution of angiosperms. Sinauer, Sunderland

    Google Scholar 

  • Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma KJ, Qiu Y-L, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS (2011) Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot 98:704–730

    Article  PubMed  Google Scholar 

  • Sosa V, Chase MW (2003) Phylogenetics of Crossosomataceae based on rbcL sequence data. Syst Bot 28:96–105

    Google Scholar 

  • Staedler YM, Endress PK (2009) Diversity and lability of floral phyllotaxis in the pluricarpellate families of core Laurales (Gomortegaceae, Atherospermataceae, Siparunaceae, Monimiaceae). Int J Plant Sci 170:522–550

    Article  Google Scholar 

  • Stevens PF (2001) Angiosperm phylogeny website, version 9, June 2008. http://www.mobot.org/MOBOT/research/APweb

  • Stevens PF (2007) Clusiaceae-Guttiferae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 9. Springer, Berlin, pp 48–66

    Google Scholar 

  • Stevens PF, Luteyn J, Oliver EGH, Bell TL, Brown EA, Crowden RK, George AS, Jordan GJ, Ladd P, Lemson K, McLean CB, Menadue Y, Pate JS, Stace HM, Weiller CM (2004) Ericaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 6. Springer, Berlin, pp 145–194

    Google Scholar 

  • ’t Hart H, van der Ham RDHJ, Stevens JF, Elema ET, van der Klis H, Gadella TWJ (1999) Biosystematic, molecular and phytochemical evidence for the multiple origin of sympetaly in Eurasian Sedoideae (Crassulaceae). Biochem Syst Ecol 27:407–426

    Article  Google Scholar 

  • Takhtajan A (1959) Die Evolution der Angiospermen. Fischer, Jena

    Google Scholar 

  • Takhtajan A (1964) The taxa of the higher plants above the rank of order. Taxon 13:160–164

    Article  Google Scholar 

  • Takhtajan A (1987) Systema Magnoliophytorum. Nauka, Leningrad

    Google Scholar 

  • Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Tank DC, Donoghue MJ (2010) Phylogeny and phylogenetic nomenclature of the Campanulidae based on an expanded sample of genes and taxa. Syst Bot 35:425–441

    Article  Google Scholar 

  • Tank DC, Beardsley PM, Kelchner SA, Olmstead RG (2006) Review of the systematics of Scrophulariaceae s.l. and their current disposition. Aust Syst Bot 19:289–307

    Article  Google Scholar 

  • Thorne RF (1983) Proposed new alignments in the angiosperms. Nord J Bot 3:85–117

    Article  Google Scholar 

  • Thorne RF (1992) An updated phylogenetic classification of the flowering plants. Aliso 13:365–389

    Google Scholar 

  • Tomlinson PB (1980) The biology of trees native to tropical Florida. Harvard University Printing Office, Allston

    Google Scholar 

  • Tsou C-H (1998) Early floral development of Camellioideae (Theaceae). Am J Bot 85:1531–1547

    Article  PubMed  CAS  Google Scholar 

  • Tsou C-H, Mori SA (2007) Floral organogenesis and floral evolution of the Lecythidoideae (Lecythidaceae). Am J Bot 94:716–736

    Article  PubMed  Google Scholar 

  • Upchurch GR, Crane PR, Drinnan AN (1994) The megaflora from the Quantico locality (upper Albian), Lower Cretaceous Potomac Group of Virginia. Virg Mus Nat Hist Mem 4:1–57

    Google Scholar 

  • van Heel WA (1966) Morphology of the androecium in Malvales. Blumea 13:177–394

    Google Scholar 

  • von Balthazar M, Endress PK (2002a) Development of inflorescences and flowers in Buxaceae and the problem of perianth interpretation. Int J Plant Sci 163:847–876

    Article  Google Scholar 

  • von Balthazar M, Endress PK (2002b) Reproductive structures and systematics of Buxaceae. Bot J Linn Soc 140:193–228

    Article  Google Scholar 

  • von Balthazar M, Schönenberger J (2009) Floral structure and organization in Platanaceae. Int J Plant Sci 170:210–225

    Article  Google Scholar 

  • von Balthazar M, Endress PK, Qiu Y-L (2000) Molecular phylogenetics of Buxaceae based on nuclear ITS and plastid ndhF sequences. Int J Plant Sci 161:785–792

    Article  Google Scholar 

  • von Balthazar M, Schatz GE, Endress PK (2003) Female flowers and inflorescences of Didymelaceae. Plant Syst Evol 237:199–208

    Article  Google Scholar 

  • von Balthazar M, Schönenberger J, Alverson WS, Bayer C, Baum DA (2006) Structure and evolution of the androecium in the Malvatheca clade (Malvaceae s.l.) and implications for Malvaceae and Malvales. Plant Syst Evol 260:171–197

    Google Scholar 

  • Wagenitz G (1997) The impact of molecular methods on the systematics of angiosperms. Bot Acta 110:274–281

    Google Scholar 

  • Wake DB, Wake MH, Specht CD (2011) Homoplasy: from detecting pattern to determining process and mechanism of evolution. Science 331:1032–1035

    Article  PubMed  CAS  Google Scholar 

  • Walker JW, Doyle JA (1975) The bases of angiosperm phylogeny: palynology. Ann Mo Bot Gard 62:664–723

    Article  Google Scholar 

  • Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci 106:3853–3858

    Article  PubMed  CAS  Google Scholar 

  • Wang X-F, Armbruster WS, Huang S-Q (2012) Extra-gynoecial pollen-tube growth in apocarpous angiosperms is phylogenetically widespread and probably adaptive. New Phytol 193:253–260

    Google Scholar 

  • Wanntorp L, Ronse De Craene LP (2009) Perianth evolution in the sandalwood order Santalales. Am J Bot 96:1361–1371

    Article  PubMed  Google Scholar 

  • Wassmer A (1955) Vergleichend-morphologische Untersuchungen an den Blüten der Crassulaceen. Doctoral dissertation, University of Zurich. Keller, Winterthur

  • Wolfe JA, Doyle JA, Page VM (1975) The bases of angiosperm phylogeny: paleobotany. Ann Mo Bot Gard 62:801–824

    Article  Google Scholar 

  • Worberg A, Alford MH, Quandt D, Borsch T (2009) Huerteales sister to Brassicales plus Malvales, and newly circumscribed to include Dipentodon, Gerrardina, Huertea, Perrottetia, and Tapiscia. Taxon 58:468–478

    Google Scholar 

  • Wu H-C, Su H-J, Hu J-M (2007) The identification of A-, B-, C-, and E-class MADS-box genes and implications for perianth evolution in the basal eudicot Trochodendron aralioides (Trochodendraceae). Int J Plant Sci 168:775–799

    Article  CAS  Google Scholar 

  • Wurdack KJ, Davis CC (2009) Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. Am J Bot 96:1551–1570

    Article  PubMed  Google Scholar 

  • Zhang L-B, Simmons MP (2006) Phylogeny and delimitation of the Celastrales inferred from nuclear and plastid genes. Syst Bot 31:122–137

    Article  CAS  Google Scholar 

  • Zhang L-B, Simmons MP, Kocyan A, Renner SS (2006) Phylogeny of the Cucurbitales based on DNA sequences of nine loci from three genomes: implications for morphological and sexual system evolution. Mol Phylogenet Evol 39:305–322

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Alex Bernhard for graphic work. Louis Ronse De Craene and an anonymous reviewer are acknowledged for their valuable suggestions on the manuscript. This study is part of project 31003A_129804 “Flower diversity and evolution in rosids” funded by the Swiss National Foundation (SNF). We also thank the Institute of Systematic Botany, University of Zurich, for the support given.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Endress.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endress, P.K., Matthews, M.L. Progress and problems in the assessment of flower morphology in higher-level systematics. Plant Syst Evol 298, 257–276 (2012). https://doi.org/10.1007/s00606-011-0576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0576-2

Keywords

Navigation