Skip to main content
Log in

Hybridization and introgression in Carex aquatilis and C. paleacea

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The genetic relationships among the sedges Carex aquatilis, C. paleacea, and C. recta, and C. recta and other hybrids (C. aquatilis × recta and C. paleacea × recta) were investigated. Microsatellite-based, dominant inter simple sequence repeat (ISSR) fingerprinting revealed no taxon-specific variation among five investigated Carex species or hybrids, while in codominant microsatellite genotyping, 5 out of 16 alleles were taxon specific. Despite significant genetic differentiation, our results demonstrate that there is also gene flow between taxa. Although principal component analysis (PCA) showed some structuring among groups, there was considerable overlapping. The analysis of genetic differentiation assessed for the expected five groups using the program Structure did not provide conclusive results for the number of main groups. However, it is visible that C. aquatilis and C. paleacea are genetically distinct, while the other studied taxa show intermediate genetic features. Both the microsatellite analysis and sequencing of the internal transcribed spacer (ITS) region supported the view that the parental species of C. recta are C. aquatilis and C. paleacea, although with unequal contribution. C. paleacea × recta is likely to possess additional genetic material apart from that originating from C. aquatilis and C. paleacea. Our study shows that ISSR markers failed to be sufficiently informative, but the combination of sequencing (ITS) and the use of microsatellite genotyping proved their applicability in resolving fine-scale taxonomic questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ball PW, Reznicek AA (2002) Carex. In: Flora of North America Editorial Committee (ed) Flora of North America. Oxford University Press, New York, pp 254–273

    Google Scholar 

  • Barker MS, Hauk WD (2003) An evaluation of Sceptridium dissectum (Ophioglossaceae) with ISSR markers: implications for Sceptridium systematics. Am Fern J 93:1–19

    Article  Google Scholar 

  • Basha SD, Sujatha M (2009) Genetic analysis of Jatropha species and interspecific hybrids of Jatropha curcas using nuclear and organelle specific markers. Euphytica 168:197–214

    Article  CAS  Google Scholar 

  • Cayouette J, Catling PM (1992) Hybridization in the genus Carex with special reference to North America. Bot Rew 58:351–438

    Article  Google Scholar 

  • Cayouette J, Morisset P (1985) Chromosome studies on natural hybrids between maritime species of Carex (sections Phacocystis and Cryptocarpae) in northeastern North America, and their taxonomic implications. Can J Bot 63:1957–1982

    Google Scholar 

  • Cayouette J, Morisset P (1986a) Chromosome studies on Carex salina complex (Cyperaceae, sections Cryptocarpae) in northeastern North America. Cytologia 51:817–856

    Google Scholar 

  • Cayouette J, Morisset P (1986b) Chromosome studies on Carex paleacea Wahl., C. nigra (L.) Reichard, and C. aquatilis Wahl. in northeastern North America. Cytologia 51:857–883

    Google Scholar 

  • Choler P, Erschbamer B, Tribsch A, Gielly L, Taberlet P (2004) Genetic introgression as a potential to widen a species’ niche: insights from alpine Carex curvula. Proc Natl Acad Sci USA 101:171–176

    Article  CAS  PubMed  Google Scholar 

  • Dean M, Ashton PA (2008) Leaf surfaces as a taxonomic tool: the case of Carex section Phacocystis (Cyperaceae) in the British Isles. Plant Syst Evol 273:97–105

    Article  Google Scholar 

  • Dean M, Ashton PA, Hutcheon K, Jermy AC, Cayotte J (2008) Description, ecology and establishment of Carex salina Wahlenb. (Saltmarsh Sedge)—a new British species. Watsonia 27:51–57

    Google Scholar 

  • Egorova TV (1999) The sedges (Carex L.) of Russia and adjacent states (within the limits of the former USSR). St. Petersburg State Chemical-Pharmaceutical Academy, St. Petersburg & Missouri Botanical Garden Press, St. Louis

    Google Scholar 

  • Elven R, Murray DF, Razzhivin V, Yurtsev BA (2005) Checklist of the panarctic flora (PAF): vascular plants. University of Oslo, Oslo

    Google Scholar 

  • Ericson L, Wallentinus H-G (1979) Seashore vegetation around the Gulf of Bothnia. Guide for the International Society of Vegetation Science, July–August 1977. Wahlenbergia 5:1–142

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 13:2611–2620

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin Ver. 3.0: An integrated software package for population genetics data analysis. Computational and Molecular Population Genetics Lab, University of Berne, Switzerland

    Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  Google Scholar 

  • Faulkner JS (1972) Chromosome studies on Carex section Acutae in north-west Europe. Bot J Linn Soc 65:271–301

    Google Scholar 

  • Faulkner JS (1973) Experimental hybridization of north-west European species in Carex section Acutae (Cyperaceae). Bot J Linn Soc 67:233–253

    Article  Google Scholar 

  • Fox CW, Wolf JB (2006) Evolutionary genetics: concepts and case studies. Oxford University Press, New York

    Google Scholar 

  • Goldman JJ (2008) The use of ISSR markers to identify Texas bluegrass interspecific hybrids. Plant Breed 127:644–646

    Article  CAS  Google Scholar 

  • Hendrichs M, Michalski S, Begerow D, Oberwinkler F, Hellwig FH (2004a) Phylogenetic relationships in Carex, subgenus Vignea (Cyperaceae), based on ITS sequences. Plant Syst Evol 246:109–125

    Article  Google Scholar 

  • Hendrichs M, Oberwinkler F, Begerow D, Bauer R (2004b) Carex, subgenus Carex (Cyperaceae)—a phylogenetic approach using ITS sequences. Plant Syst Evol 246:89–107

    Article  Google Scholar 

  • Hipp AL, Kettenring KM, Feldheim KA, Weber JA (2009) Isolation of 11 polymorphic tri- and tetranucleotide microsatellite loci in a North American sedge (Carex scoparia: Cyperaceae) and cross-species amplification in three additional Carex species. Mol Ecol Res 9:625–627

    Google Scholar 

  • Johansson MM, Kahma KK, Boman H, Launiainen J (2004) Scenarios for sea level on the Finnish coast. Boreal Envir Res 9:153–166

    Google Scholar 

  • King MG, Roalson EH (2009) Isolation and characterization of 11 microsatellite loci from Carex macrocephala (Cyperaceae). Conserv Genet. doi:10.1007/s10592-008-9558-5

  • Korpelainen H, Virtanen V, Kostamo K, Karttunen H (2008) Molecular evidence shows that the moss Rhytidiadelphus subpinnatus (Hylocomiaceae) is clearly distinct from R. squarrosus. Mol Phylog Evol 48:372–376

    Article  CAS  Google Scholar 

  • Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 6:e508

    Article  Google Scholar 

  • Lexer C, Widmer A (2008) The genic view of plant speciation: recent progress and emerging questions. Philos Trans R Soc B Biol Sci 363:3023–3036

    Article  Google Scholar 

  • McClintock KA, Waterway MJ (1994) Genetic differentiation between Carex lasiocarpa and C. pellita (Cyperaceae) in North America. Am J Bot 81:224–231

    Article  Google Scholar 

  • Nakamatte E, Arnstein Lye K (2007) AFLP-based differentiation in north Atlantic species of Carex sect. Phacocystis. Nordic J Bot 25:318–328

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Ohbayashi K, Hodoki Y, Nakayama S, Shimada M, Kunii H (2008) Development of new microsatellite markers from a salt-marsh sedge Carex rugulosa by compound simple sequence repeat-polymerase chain reaction. Mol Ecol Res 8:1497–1499

    Article  CAS  Google Scholar 

  • Ohsako T, Yamane K (2007) Isolation and characterization of polymorphic microsatellite loci in Asiatic sand sedge, Carex kobomugi Ohwi (Cyperaceae). Mol Ecol Notes 7:1023–1025

    Article  CAS  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Ann Rev Genet 34:401–437

    Article  CAS  PubMed  Google Scholar 

  • Paun O, Forest F, Fay MF, Chase MW (2009) Hybrid speciation in angiosperms: parental divergence drives ploidy. New Phytol 182:507–518

    Article  PubMed  Google Scholar 

  • Rautiainen P, Aikio S, Hyvärinen M (2007) Growth and disturbance in the spatial dynamics of an endangered seashore grass Arctophila fulva var. pendulina. Ecol Model 207:145–154

    Article  Google Scholar 

  • Reznicek AA (1990) Evolution in sedges (Carex, Cyperaceae). Can J Bot 68:1409–1432

    Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  CAS  PubMed  Google Scholar 

  • Roalson EH, Friar EA (2004) Phylogenetic relationships and biogeographic patterns in North American members of Carex section Acrocystis (Cyperaceae) using nrDNA ITS and ETS sequence data. Plant Syst Evol 243:175–187

    Article  Google Scholar 

  • SAS Institute Inc (2008) SAS/STAT 9.2 User’s guide. SAS Institute, Cary

    Google Scholar 

  • Saxén U (1938) Die Varietäten von Carex salina Wg ssp. cuspidata Wg nebst ihren Hybriden an den Kusten des Bottnischen Busens Finnland. Acta Bot Fennica 22:130

  • Schönswetter P, Elven R, Brochmann C (2008) Trans-Atlantic dispersal and large-scale lack of genetic strcuture in the circumpolar, arctic-alpine sedge Carex bigelowii S. L. (Cyperaceae). Am J Bot 95:1006–1014

    Article  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed  Google Scholar 

  • Smith TW, Waterway MJ (2008) Evaluating species limits and hybridization in the Carex complanata complex using morphology, amplified fragment length polymorphisms, and restriction fragment analysis. Botany 8:809–826

    Article  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    Article  PubMed  Google Scholar 

  • Standley LA (1990) Allozyme evidence for the hybrid origin of the maritime species of Carex salina and Carex recta (Cyperaceae) in eastern North America. Syst Bot 15:182–191

    Article  Google Scholar 

  • Strasburg JL, Rieseberg LH (2008) Molecular demographic history of the annual sunflowers Helianthus annuus and H. petiolaris—large effective population sizes and rates of long-term gene flow. Evolution 62:1936–1950

    Article  PubMed  Google Scholar 

  • Sylvén N (1963) Det Skandinaviska flora-områdets Carices distidmaticae. Opera Botanica 8:1–161

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Väre H (2007) Typification of names published by the Finnish botanist Fredrik Nylander. Ann Bot Fennici 44:465–480

    Google Scholar 

  • Volkova PA, Shipunov AB, Elven R, Brochmann C (2008) The seashore sedges of the Russian Kola Pensinsula: How many species? Flora 203:523–533

    Google Scholar 

  • Waterway MJ (1994) Evidence for the hybrid origin of Carex knieskernii with comments on hybridization in the genus Carex (Cyperaceae). Can J Bot 72:860–871

    Article  Google Scholar 

  • Waterway MJ, Starr JR (2007) Phylogenetic relationships in tribe Cariceae (Cyperaceae) based on nested analyses of four molecular data sets. Aliso 23:165–192

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: F ST ≠ 1/(4Nm + 1). Heredity 82:117–125

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The project was funded by the Societas pro Fauna et Flora Fennica and the University of Helsinki. We wish to thank Tauno Ulvinen and Erkki Vilpa for help in collecting the material, Katja Schäfer for assistance in the laboratory, and Leena Helynranta for preparing the map of collection sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Korpelainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korpelainen, H., Virtanen, V., Kostamo, K. et al. Hybridization and introgression in Carex aquatilis and C. paleacea . Plant Syst Evol 287, 141–151 (2010). https://doi.org/10.1007/s00606-010-0307-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0307-0

Keywords

Navigation