Skip to main content

Advertisement

Log in

From the center to the margins of geographical range: molecular history of steppe plant Iris aphylla L. in Europe

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Summary

The steppe plant Iris aphylla was chosen to describe the genetic diversity patterns and postglacial expansion over the whole geographical range. By studying 29 populations, both in the centre and at the periphery of the geographical range, a moderate level of genetic diversity (P % = 32.5%; H = 0.105), a low level of linkage disequilibria and a low percentage of fixed loci (LD = 2.8%; F UL = 2.1%) were detected. The intermediate level of I. aphylla genetic diversity is rather close to plant species with a limited geographical range as well as rare and/or endangered species. It could also be explained by common processes of vegetative reproduction, the occasional or absent recruitments as well as the recent history of I. aphylla populations. The lack of significant genetic differences between central and marginal populations (AMOVA, 1.52%; P = 0.112) and the low number (1–3 per population) or lack of unique bands confirmed that the populations in both cases were recently established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott RJ and Brochmann C (2003). History and evolution of the Arctic flora: in the footsteps of Eric Hultén. Molec Ecol 12: 299–313

    Article  Google Scholar 

  • Arafeh RMH, Sapir Y, Shmida A, Iraki N, Fragman O and Comes HP (2002). Patterns of genetic and phenotypic variation in Iris haynei and I. atrofusca (Iris sect. Onocyclus = the royal irises) along an ecogeographical gradient in Israel and West Bank. Molec Ecol 11: 39–53

    Article  CAS  Google Scholar 

  • Barrett SCH and Husband BC (1990). The genetics of plant migration and colonization. In: Brown, AHD, Clegg, MT, Kahler, AL and Weir, BS (eds) Plant population genetics, breeding and genetic resources, pp. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Bockelmann AC, Reusch TBH, Bijlsma R and Bakker JP (2003). Habitat differentiation vs. isolation-by-distance: the genetic population structure of Elymus athericus in European salt marshes. Molec Ecol 12: 505–515

    Article  CAS  Google Scholar 

  • Bossart JL and Powell DP (1998). Genetic estimates of population structure and gene flow: limitations, lessons and new directions. Trends Ecol Evol 13: 202–206

    Article  Google Scholar 

  • Cain ML, Damman H and Muir A (1998). Seed dispersal and the Holocene migration of woodland herbs. Ecol Monographs 68: 325–347

    Article  Google Scholar 

  • Cyunel E (1959). Studia nad rozmieszczeniem gatunków kserotermicznych w polskich Karpatach Zachodnich. Frag Flor Geobot 3: 409–441

    Google Scholar 

  • Demesure B, Comps B and Petit RJ (1996). Chloroplast DNA phylogeography of the common beech (Fagus sylvatica L.) in Europe. Evolution 50: 2515–2520

    Article  CAS  Google Scholar 

  • Després L, Loriot S and Gaudeul M (2002). Geographic patterns of genetic variation in the European globeflowers Trollius eurpaeus L. (Ranunculaceae) inferred from amplified fragment length polymorphism markers. Molec Ecol 11: 2337–2347

    Article  Google Scholar 

  • Dostál J (1989). Nova Kvĕtena. ČSSR, T. 2, Academia Praha, 1232–1237

    Google Scholar 

  • Ehrich D and Stenseth NC (2001). Genetic structure of Siberian lemmings (Lemmus sibiricus) in a continuous habitats: large patches rater then isolation by distance. Heredity 86: 716–730

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genetics, University of Washington, Seattle

  • Fischer M, Husi R, Prati D, Peintinger D, Van Kleunen M and Schmid B (2000). RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). Amer J Bot 87: 1128–1137

    Article  Google Scholar 

  • Garnier S, Alibert P, Audiot P, Prieur B and Rasplus JY (2004). Isolation by distance and sharp discontinuities in gene frequencies: implications for the phylogeography of an alpine insect species, Carabus solieri. Molec Ecol 13: 1883–1897

    Article  CAS  Google Scholar 

  • Gitzendanner MA and Soltis PS (2000). Patterns of genetic variation in rare and widespread plant congeners. Amer J Bot 87: 777–786

    Article  Google Scholar 

  • Grivet D and Petit RJ (2002). Phylogeography of the common ivy (Hedera sp.) in Europe: genetic differentiation through space and time. Molec Ecol 11: 1351–1362

    Article  CAS  Google Scholar 

  • Golden Software (2002) Contouring and 3D surface mapping for scientist and engineers. Golden Software, Inc., Golden, Co

  • Guiter F, Andrieu-Ponel V, De Beaulieu JL, Ceddadi R, Calvez M, Ponel P, Reille M, Keller T, Goeury C and Beaulieu JL (2003). The last climatic cycles in Western Europe: a comparison between long continuous lacustrine sequences from France and other terrestrial records. Quarter Int 111: 59–74

    Article  Google Scholar 

  • Hamrick JM and Godt MJW (1989). Allozyme diversity in plant species. In: Brown, ADH, Clegg, MT, Kahler, AL and Weir, BS (eds) Plant population genetics, breeding, and genetic resources, Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Hellberg ME (1995). Stepping-stone gene flow in the solitary coral Balanophyllia elegans: equilibrium and non-equilibrium at different spatial scales. Marine Biol 123: 573–581

    Article  Google Scholar 

  • Hewitt GM (1999). Post-glacial re-colonization of European biota. Biol J Linn Soc 68: 87–112

    Article  Google Scholar 

  • Hewitt GM (2001). Speciation, hybrid zones and phylogeography – or seeing genes in space and time. Molec Ecol 10: 337–349

    Article  Google Scholar 

  • Hoffmann AA and Blows MW (1994). Species borders: ecological and evolutionary perspectives. Trends Ecol Evol 9: 223–227

    Article  Google Scholar 

  • Holsinger KE, Lewis PO and Dey DK (2002). A Bayesian approach to inferring population structure from dominant markers. Molec Ecol 11: 1157–1164

    Article  CAS  Google Scholar 

  • Holub J, Procházka F (2000) Red list of vascular plants of the Czech Republic. Preslia, Praha 72: 187–230

  • Huntley B and Birks HJB (1983). An atlas of past and present maps for Europe: 0–13000 years ago. Cambridge University Press, Cambridge

    Google Scholar 

  • Hutchinson DW and Templeton AR (1999). Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53: 1898–1914

    Article  Google Scholar 

  • Innan H, Terauchi R, Kahl G and Tajima F (1999). A method for estimating nucleotide diversity from AFLP data. Genetics 151: 1157–1164

    PubMed  CAS  Google Scholar 

  • Johnson MS and Black R (1998). Effect of isolation by distance and geographical discontinuity on genetic subdivision of Littoraria cinglage. Marine Biol 132: 295–303

    Article  Google Scholar 

  • Journel A and Huijbregts C (1978). Mining geostatistics. Academic Press, London

    Google Scholar 

  • Karron JD (1997). Genetic consequences of different patterns of distribution and abundance. In: Kunin, WE and Gaston, KJ (eds) The biology of rarity. Chapman and Hall, London, UK

    Google Scholar 

  • Kaźmierczakowa R, Zarzycki K (2001) Polska Czerwona Księga Roślin. Instytut Botaniki im. Władysława Szafera. PAN, Kraków

  • Kimura M and Weiss GH (1964). The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49: 561–576

    PubMed  CAS  Google Scholar 

  • King RA and Ferris C (1998). Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. Molec Ecol 7: 1151–1161

    Article  CAS  Google Scholar 

  • Knobloch E (1984) Megasporen aus der Kreide von Mitteleuropa. Extract Sbor geol ved Paleontologie 26: 157–195

  • Knobloch E and Konzalová M (1998). Comparision of the Eocene plant assemblages of Bohemia (Czech Republic) and Saxony (Germany). Review Palaeobot Palynol 101: 29–41

    Article  Google Scholar 

  • Kornaś J (1955) Charakterystyka geobotaniczna Gorców. Monografia Botaniczna, 3. Warszawa

  • Lagercrantz U and Ryman N (1990). Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozyme variation. Evolution 44: 38–53

    Article  Google Scholar 

  • Lammi A, Siikamäki P and Mustajärvi K (1999). Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscaria. Conserv Biol 13: 1069–1078

    Article  Google Scholar 

  • Lamour KH and Hausbeck MK (2001). Investigating the spatiotemporal genetic structure of Phytophthora capsici in Michigan. Ecol Pop Biol 91: 973–980

    CAS  Google Scholar 

  • Lannér-Herrera C, Gustafsson M, Falt AS and Bryngelsson T (1996). Diversity in natural populations of wild Brassica oleracea as estimated by isozyme and RAPD analysis. Genet Res Crop Evol 43: 13–23

    Article  Google Scholar 

  • Latta RG and Mitton JB (1997). A comparison of population differentiation across four classes of gene marker in limber pine (Pinus flexilis James). Genetics 146: 1153–1163

    PubMed  CAS  Google Scholar 

  • Lindqvist-Kreuze H, Koponen H and Valkonen JPT (2003). Genetic diversity of arctic bramble (Rubus arcticus L. subsp. arcticus) as measured by amplified fragment length polymorphism. Canad J Bot 81: 805–813

    Article  CAS  Google Scholar 

  • Loveless MD and Hamrick JL (1984). Ecological determinants of genetic structure in plant populations. Annual Rev Ecol Syst 15: 65–95

    Article  Google Scholar 

  • Ludwig G, Schnittler M (1996) Rote Liste gefährdeter Pflanzen Deutschlands. Schriftenreihe für Vegetationskunde. Hefte 28. Bonn, Bad Godesberg

  • Luo ZW, Zhang RM and Kearsey MJ (2004). Theoretical basis for genetic linkage analysis in autotetraploid species. Proc Natl Acad Sci USA 101: 7040–7045

    Article  PubMed  CAS  Google Scholar 

  • Lynch M and Milligan BG (1994). Analysis of population genetic structure with RAPD markers. Molec Ecol 3: 91–99

    Article  CAS  Google Scholar 

  • Maglocký Š and Feráková V (1993). Red List of ferns and flowering plants (Pteridiophyta and Spermatophyta) of the flora of Slovakia (the second draft). Biologia Bratisl 48: 361–385

    Google Scholar 

  • Manni F and Barrai I (2001). Genetic structure and linguistic boundaries in Italy: a microregional approach. Human Biol 73: 335–347

    Article  PubMed  CAS  Google Scholar 

  • Manni F, Guerard E and Heyer E (2004). Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Human Biol 2: 173–190

    Article  Google Scholar 

  • Matuszkiewicz JM (1993) Krajobrazy roślinne i regiony geobotaniczne Polski. Prace geobotaniczne 158

  • McVean GAT (2002). A genealogical interpretation of linkage disequilibrium. Genetics 162: 987–991

    PubMed  Google Scholar 

  • Medwecka-Kornaś A (1959). Iris aphylla L. ssp. bohemica (Sch.) Dost. na Wyżynie Małopolskiej. Frag Flor Geobot 1: 3–6

    Google Scholar 

  • Miller MP (1997) Tools for population genetic analyses (TFPGA) ver.1.3: a windows program for the analysis of allozyme and molecular population genetic data. Computer Software distributed by author

  • Miyashita NT, Kawabe M and Innan H (1999). DNA variation in the wild plant Arabidopsis thaliana revealed by amplified fragment length polymorphism analysis. Genetics 152: 1723–1731

    PubMed  CAS  Google Scholar 

  • Monmonier M (1973). Maximum-difference barriers: An alternative numerical regionalization method. Geograph Analysis 3: 245–261

    Google Scholar 

  • Muluvi GM, Sprent JI and Soranzo N (1999). Amplified fragment length polymorphism (AFLP) analysis of genetic variation in Moringa oleifera Lam. Molec Ecol 8: 463–470

    Article  CAS  Google Scholar 

  • Nybom H (2004). Comparition of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molec Ecol 13: 1143–1155

    Article  CAS  Google Scholar 

  • Nybom H and Bartish IV (2000). Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Persp Pl Ecol Evol Syst 3: 93–114

    Article  Google Scholar 

  • Olsen JL, Stam WT, Coyer JA, Reusch TBH, Billingham M, Boström Ch, Calvert E, Christie H, Granger S, a Lumière R, Milchakova N, Oudot-lesecq MP, Procaccini G, Snjabi B, Serrão E, Veldsink J, Widdicombe S and Wyllie-echeverria S (2004). North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L. Molec Ecol 13: 1923–1941

    Article  CAS  Google Scholar 

  • Palmé AE, Su Q, Rautenberg A, Manni F and Lascoux M (2003). Postglacial recolonization and cpDNA variation of silver birch, Betula pendula. Molec Ecol 12: 201–212

    Article  Google Scholar 

  • Pawłowski J (2003) Uwarunkowania biogeograficzne Ojcowskiego Parku Narodowego i Pryrodnoho Zapowidnyka “Medobory”. Podobieństwa i różnice. Rola obszarów chronionych Zachodniego P Podola i Jury Ojcowskiej w utrzymaniu różnorodności biologicznej i krajobrazowej, 95–99. Zapowiednik “Medobory”, Hrymailiv

  • Peakall R and Smouse P (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molec Ecol Notes 6: 288–295

    Article  Google Scholar 

  • Peterson MA (1995). Phenological isolation, gene flow and developmental differences among low- and high-elevation populations of Euphilotes enoptes (Lepidoptera: Lycaenidae). Evolution 49: 446–455

    Article  Google Scholar 

  • Peterson MA (1996). Long-distance gene flow in the sedentary butterfly, Euphilotes enoptes (Lepidoptera: Lycaenidae). Evolution 50: 1990–1999

    Article  Google Scholar 

  • Petit R, Brewer S, Bordac S, Burg K, Chedaddi R, Coart E, Cottrell J, Csaikl U, van Dam B, Deans J, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea P, Jensen J, Koning A, Lowe A, Madsen S, Matyas G, Munro R, Popescu F, Slade D, Tabbener H, de Vries H, Ziegenhagen B, de Beaulieu J and Kremer A (2002). Identification of refugia and post-glacial colonization routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manage 156: 49–74

    Article  Google Scholar 

  • Pogson GH, Taggart CT, Mesa KA and Boutilier RG (2001). Isolation by distance in the Atlantic cod, Gadus morhua, at large and small geographical scales. Evolution 55: 131–146

    PubMed  CAS  Google Scholar 

  • Pólya L (1949). Chromosome number of some Hungarian plants. Acta Geobot Hung 6: 124–138

    Google Scholar 

  • Pólya L (1950). Chromosome numbers of Hungarian plants. Ann Biol Univ Debreceniensis 7: 46–56

    Google Scholar 

  • Prentice HC and White RJ (1988). Variability, population size and isolation: the structuring of diversity in Öland Gypsophila fastigiata. Acta Oecol 9: 19–29

    Google Scholar 

  • Rafalska-Jasiewiczowa M, Latałowa M, Wasylikowa K, Tobolski K, Madeyska E, Wright HE, Turner CH (2004) Late Glacial and Holocene history of vegetation in Poland based on isopollen maps. W. Szafer Institute of Botany, Polish Academy of Science, Kraków

  • Reynolds J, Weir BS and Cockerham CC (1983). Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105: 767–779

    PubMed  CAS  Google Scholar 

  • Rousset F (1997). Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219–1228

    PubMed  CAS  Google Scholar 

  • Sándor F (1999) Magyarország védett növényei. Nemzeti Kulturális Örökség Minisztérium Frankfurt’99 Kht

  • Schaal BA, Hayworth DA, Olsen KM, Rauscher JT and Smith WA (1998). Phylogeographic studies in plants: problems and prospects. Molec Ecol 4: 465–474

    Article  Google Scholar 

  • Scheiner SM and Goodnight CJ (1984). The comparison of phenotypic plasticity and genetic variation in populations of the grass Danthonia spicata. Evolution 38: 845–855

    Article  Google Scholar 

  • Schiemann K, Tyler T and Widén B (2000). Allozyme diversity in relation to geographic distribution and population size in Lathyrus vernus (L.) Bernh. (Fabaceae). Pl Syst Evol 225: 119–132

    Article  CAS  Google Scholar 

  • Schmidt K and Jensen K (2000). Genetic structure and AFLP variation of remnant populations in the rare plant Pedicularis palustris (Scrophulariaceae) and its relation to population size and reproductive components. Amer J Bot 87: 678–689

    Article  CAS  Google Scholar 

  • Schmitt T and Seitz A (2001). Intraspecific allozymatic differentiation reveals the glacial refugia and the postglacial expansions of European Erebia medusa (Lepidoptera: Nymphalidae). Biol J Linn Soc 74: 429–458

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin version 2000: a software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva. Geneva, Switzerland

  • Schönswetter P, Paun O, Tribsch A and Niklfeld H (2003). Out of the alps: colonisation of the arctic by east alpine populations of Ranunculus glacialis (Ranunculaceae). Molec Ecol 12: 3371–3381

    Google Scholar 

  • Sharbel TF, Haubold B and Mitchell-Olds T (2000). Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Molec Ecol 9: 2109–2118

    Article  CAS  Google Scholar 

  • Slatkin M (1987). Gene flow and the geographic structure of natural populations. Science 236: 787–792

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M (1993). Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47: 264–279

    Article  Google Scholar 

  • Soltis DE and Soltis PS (1995). The dymamic nature of polyploid genomes. Proc Natl Acad Sci, USA 92: 8089–8091

    Article  PubMed  CAS  Google Scholar 

  • StatSoft, Inc. (1997) Statistica for Windows. Computer program manual. Tulusa

  • Sumner J, Jessop T, Paetkau D and Moritz C (2004). Limited effect of anthropogenic habitat fragmentation on molecular diversity in a rain forest skink, Gnypetoscincus queenslandiae queenslandiae. Molec Ecol 13: 259–269

    Article  Google Scholar 

  • Szafer W (1983). Szata roślinna Polski. Tom I. PWN, Kraków

    Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG and Cossons JF (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molec Ecol 7: 453–464

    Article  CAS  Google Scholar 

  • Tero N, Aspi J, Siikamäki P, Jäkäläniemi A and Tuomi J (2003). Genetic structure and gene flow in a metapopulation of an endangered plant species, Silene tatarica. Molec Ecol 12: 2073–2085

    Article  CAS  Google Scholar 

  • Travis SE, Maschinski J and Keim P (1996). An analysis of genetic variation in Astragalus cremnophylax var. cremnophylax, a critically endangered plant, using AFLP markers. Molec Ecol 5: 735–745

    Article  CAS  Google Scholar 

  • Tremblay M and Simon JP (1989). Genetic structure of marginal populations of white spruce (Picea glauca) at its northern limit of distribution in Nouveau-Quebec. Canad J Forest Res 19: 1371–1379

    Article  Google Scholar 

  • Tribsch A, Schönswetter P and Stuessy T (2002). Saponaria pumila (Caryophyllaceae) and the Ice Ages in the European Alps. Amer J Bot 89: 2024–2033

    Article  Google Scholar 

  • Tyler T (2002). Geographic distribution of allozyme variation in relation to post-glacial history in Carex digitata, a widespread European woodland sedge. J Biogeogr 29: 919–930

    Article  Google Scholar 

  • Van Rossum F and Prentice CH (2003). Structure of allozyme variation in Nordic Silene nutans (Caryophyllaceae): population size, geographical position and immigration history. Bot J Linn Soc 81: 357–371

    Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the author. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgique

  • Voronoï MG (1908). Nouvelles application des parameters continues á la théorie des formes quadratiques, deuxième mmoire, recherché sur le paralléloedres primitives. J Math 134: 198–207

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M and Zabeau M (1995). AFLP: a new technique for DNA fingerprinting. Nucl Acid Res 23: 4407–4414

    Article  CAS  Google Scholar 

  • Wcisło H (1964). Karyological studies in the genus Iris L. in Poland. Acta Biol Cracov 7: 25–36

    Google Scholar 

  • Wróblewska A (2003). Właściwości marginalnej populacji Iris aphylla L. w Biebrzańskim Parku Narodowym (NE Polska). Frag Flor Geobot Pol 10: 195–207

    Google Scholar 

  • Wróblewska A and Brzosko E (2006). The genetic structure of the steppe plant Iris aphylla L. at the northern limit of its geographical range. Bot J Linn Soc 152: 245–255

    Google Scholar 

  • Wróblewska A, Brzosko E, Czarnecka B and Nowosielski J (2003). High levels of genetic diversity in populations of Iris aphylla L. (Iridaceae), an endangered species in Poland. Bot J Linn Soc 142: 65–72

    Article  Google Scholar 

  • Yeh FC, Yang RC, Boyle TBJ, Ye ZH and Mao JX (1997). POPGENE version 1.31, the shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Alberta

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ada Wróblewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wróblewska, A. From the center to the margins of geographical range: molecular history of steppe plant Iris aphylla L. in Europe. Plant Syst Evol 272, 49–65 (2008). https://doi.org/10.1007/s00606-007-0630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0630-2

Keywords

Navigation