Skip to main content
Log in

Biogeography and evolution of flower color in Veratrum (Melanthiaceae) through inference of a phylogeny based on multiple DNA markers

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Veratrum (Melanthiaceae) comprises ca. 27 species with highly variable morphology. This study aims to construct the molecular phylogeny of this genus to infer its floral evolution and historical biogeography, which have not been examined in detail before. Maximum parsimony, maximum likelihood, and Bayesian analyses were performed on the separate and combined ITS, trnL-F, and atpB-rbcL sequences to reconstruct the phylogenetic tree of the genus. All Veratrum taxa formed a monophyletic group, within which two distinct clades were distinguished: species with white-to-green perianth formed one highly supported clade, and the species with black-purple perianth constituted another highly supported clade. Phylogenetic inference on flower color evolution suggested that white-to-green perianth was a plesiomorphic state and black-purple perianth was apomorphic for Veratrum. When species distribution areas were traced as a multi-state character, parsimonious optimization inferred that Veratrum possibly originated in East Asia. Our study confirmed previous phylogenetic and taxonomic suggestions on this genus and provided a typical example of plant radiation across the Northern Hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H. (1974). A new look at the statistical model identification. IEEE T. Automat. Cont. 19: 716–723

    Article  Google Scholar 

  • Baker J. G. (1880). A synopsis of the Colchicaceae and the aberrant tribes of Liliaceae. Bot. J. Linn. Soc. 17: 405–410

    Google Scholar 

  • Bodkin N. L. (1978). A revision of North American Melanthium L. (Liliaceae). Ph.D. dissertation. University of Maryland, College Park

    Google Scholar 

  • Chase M. W. and Hills H. G. (1991). Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40: 215–220

    Article  Google Scholar 

  • Chen X. Q., Takahashi H. (2000) Veratrum. In: Flora of China Editorial Committee (ed.) Flora of China. Science Press, Beijing, China: 82–85.

  • Chiang T. Y., Schaal B. A. and Peng C. I. (1998). Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA. Bot. Bul. Acad. Sin. 39: 245–250

    CAS  Google Scholar 

  • Darlu P. and Lecointre G. (2002). When does the incongruence length difference test fail?. Molec. Biol. Evol. 19: 432–437

    PubMed  CAS  Google Scholar 

  • Deam C. C. (1940) Flora of Indiana. Department of Conservation, Division of Forestry, Indianapolis, Indiana: 307–308.

  • DeBry R. W. and Olmstead R. G. (2000). A simulation study of reduced tree-search effort in bootstrap resampling analysis. Syst. Biol. 49: 171–179

    Article  PubMed  CAS  Google Scholar 

  • Dolphin K., Belshaw R., Orme C. D. L. and Quicke D. L. J. (2000). Noise and incongruence: interpreting results of the incongruence length difference test. Molec. Phylogenet. Evol. 17: 401–406

    Article  PubMed  CAS  Google Scholar 

  • Dowton M. and Austin A. D. (2002). Increased congruence does not necessarily indicate increased phylogenetic accuracy - the behavior of the incongruence length difference test in mixed-model analyses. Syst. Biol. 51: 19–31

    Article  PubMed  Google Scholar 

  • Farris J. S., Källersjö M., Kluge A. G. and Bult C. (1995). Constructing a significance test for incongruence. Syst. Biol. 44: 570–572

    Article  Google Scholar 

  • Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791

    Article  Google Scholar 

  • Hodges S. A., Whittall J. B., Fulton M. and Yang J. Y. (2002). Genetics of floral traits influencing reproductive isolation between Aquilegia formosa and Aquilegia pubescens. Amer. Naturalist 159: S51–S60

    Article  Google Scholar 

  • Hong D. Y. (1993). Eastern Asian-North American disjunctions and their biological significance. Cathaya 5: 1–39

    Google Scholar 

  • Huelsenbeck J. P. and Ronquist F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755

    Article  PubMed  CAS  Google Scholar 

  • Ji Z. H. (1980) Veratrum. In: Flora of China Editorial Committee (ed.) Flora reipublicae popularis sinicae. Science Press, Beijing, pp. 19–30 (in Chinese).

  • Kleijn D. and Steinger T. (2002). Contrasting effects of grazing and hay cutting on the spatial and genetic population structure of Veratrum album, an unpalatable, long-lived, clonal plant species. J. Ecol. 90: 360–370

    Article  Google Scholar 

  • Knuth P. (1909). Handbook of flower pollination. Clarendon Press, Oxford

    Google Scholar 

  • Liao W. J., Song Q. F. and Zhang D. Y. (2006). Pollen and resource limitation in Veratrum nigrum (Liliaceae), an andromonoecious herb. J. Integr. Pl. Biol. 48: 1401–1408

    Article  Google Scholar 

  • Maddison W. P. and Maddison D. R. (1992). MacClade: Analysis of phylogeny and character evolution, version 3.0. Sinauer, Sunderland

    Google Scholar 

  • McKenna M. C. (1975). Fossil mammals and early Eocene North Atlantic land continuity. Ann. Missouri Bot. Gard. 62: 335–353

    Article  Google Scholar 

  • Miller R. E., Rausher M. D. and Manos P. S. (1999). Phylogenetic systematics of Ipomoea (Convolvulaceae) based on ITS and waxy sequences. Syst. Bot. 24: 209–227

    Article  Google Scholar 

  • Novacek M. J. (1999). 100 million years of land vertebrate evolution: the Cretaceous-early Tertiary transition. Ann. Missouri Bot. Gard. 86: 230–258

    Article  Google Scholar 

  • Nylander J. A. A. (2004) MrModeltest v2. Program distributed by the author. Uppsala University, Evolutionary Biology Centre, Uppsala.

  • Richardson J. E., Pennington R. T., Pennington T. D. and Hollingsworth P. M. (2001). Rapid diversification of a species rich genus of Neotropical rain forest trees. Science 293: 2242–2245

    Article  PubMed  CAS  Google Scholar 

  • Robertson C. (1896). Flowers and Insects. XVI. Bot. Gaz. 21: 266–274

    Article  Google Scholar 

  • Ronquist F. and Huelsenbeck J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Swofford D. L. (2000). PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Taberlet P., Gielly L., Pautou G. and Bouvet J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Molec. Biol. 17: 1105–1109

    Article  CAS  Google Scholar 

  • Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F. and Higgins D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876–4882

    Article  Google Scholar 

  • Tiffney B. H. (1985a). The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the northern hemisphere. J. Arnold Arbor. 66: 243–273

    Google Scholar 

  • Tiffney B. H. (1985b). Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J. Arnold Arbor. 66: 73–94

    Google Scholar 

  • Waser N. (1983). The adaptive nature of floral traits: ideas and evidence. In: Real, L. (eds) Pollination biology, pp 241–285. Academic Press, New York

    Google Scholar 

  • White T. J., Bruns T., Lee S. and Taylor J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M., Gelfand, D., Sninsky, J., and White, T. (eds) PCR protocols: A guide to methods and applications, pp 315–322. Academic Press, San Diego

    Google Scholar 

  • Wilkin P. (1995). A new species of Ipomoea (Convolvulaceae) from Mexico State, Mexico and its evolution. Kew Bull. 50: 93–102

    Google Scholar 

  • Wolfe J. A. (1972). An interpretation of Alaskan Tertiary floras. In: Graham, A. (eds) Floristics and paleofloristics of Asia and Eastern North America, pp 201–233. Elsevier, New York

    Google Scholar 

  • Wolfe J. A. (1975). Some aspects of plant geography of the Northern Hemisphere during the Late Cretaceous and Tertiary. Ann. Missouri Bot. Gard. 62: 264–179

    Article  Google Scholar 

  • Wulff E. V. (1943). An introduction to historical plant geography. Chronica Botanica, Waltham

    Google Scholar 

  • Yoder A. D., Irwin J. A. and Payseur B. A. (2001). Failure of the ILD to determine data combinability for slow loris phylogeny. Syst. Biol. 50: 408–424

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y. M., Wohlhauser S., Möller M., Chassot P., Mansion G., Grant J., Kupfer P. and Klackenberg J. (2003). Monophyly and relationships of the tribe Exaceae (Gentianaceae) inferred from nuclear ribosomal and chloroplast DNA sequences. Molec. Phylogenet. Evol. 28: 500–517

    Article  PubMed  CAS  Google Scholar 

  • Zomlefer W. B. (1997). The genera of Melanthiaceae in the southeastern United States. Harvard Pap. Bot. 2: 133–177

    Google Scholar 

  • Zomlefer W. B., Whitten W. M., Williams N. H. and Judd W. S. (2003). An overview of Veratrum s.1. (Liliales : Melanthiaceae) and an infrageneric phylogeny based on ITS sequence data. Syst. Bot. 28: 250–269

    Google Scholar 

  • Zomlefer W. B., Williams N. H., Whitten W. M. and Judd W. S. (2001). Generic circumscription and relationships in the tribe Melanthieae (Liliales, Melanthiaceae), with emphasis on Zigadenus: Evidence from ITS and trnL-F sequence data. Amer. J. Bot. 88: 1657–1669

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.-Y. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, WJ., Yuan, YM. & Zhang, DY. Biogeography and evolution of flower color in Veratrum (Melanthiaceae) through inference of a phylogeny based on multiple DNA markers. Plant Syst. Evol. 267, 177–190 (2007). https://doi.org/10.1007/s00606-007-0528-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0528-z

Keywords

Navigation