Skip to main content

Advertisement

Log in

Species tree phylogeny, character evolution, and biogeography of the Patagonian genus Anarthrophyllum Benth. (Fabaceae)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Geologic events promoting the aridization of southern South America contributed to lineage divergences and species differentiation through geographic (allopatric divergence) and biotic and abiotic factors (ecological divergence). For the genus Anarthrophyllum, which is distributed in arid and semi-arid regions of Patagonia, we assessed how these factors affected species diversification and reconstructed its possible biogeographic history in South American arid environments. Sequences were obtained from two molecular markers: the ITS nuclear region and the trnS-trnG plastid region. Using Parsimony, Maximum likelihood and Bayesian inference individual gene trees were reconstructed, and a species tree was obtained using multi-species coalescent analysis. Divergence times among species were estimated using secondary calibrations. Flexible Bayesian models and stochastic character mapping were used to elucidate ancestral geographic distributions and the evolution of the floral and vegetative phenotypes in the genus. Gene trees and species tree analyses strongly support Anarthrophyllum as monophyletic; all analyses consistently retrieved three well-supported main clades: High Andean Clade, Patagonian Clade 1, and Patagonian Clade 2. Main diversification events occurred concomitant with the Andean uplift and steppe aridization; the Andean mountain range possibly acted as a species barrier for the High Andean Clade. Vegetative traits showed adaptations to harsh climates in some clades, while pollinator-related floral features were associated with independent diversification in bee- and bird-pollinated clades within both Patagonian Clades. In conclusion, evolutionary and biogeographic history of Anarthrophyllum resulted from the action of ecological, historical, and geographic factors that acted either alternatively or simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alsos, I. G., Engelskjøn, T., Gielly, L., Taberlet, P., & Brochmann, C. (2005). Impact of ice ages on circumpolar molecular diversity: insights from an ecological key species. Molecular Ecology, 14(9), 2739–2753.

    Article  CAS  PubMed  Google Scholar 

  • Amarilla, L. D., Chiapella, J. O., Sosa, V., Moreno, N. C., & Anton, A. M. (2015). A tale of North and South America: time and mode of dispersal of the amphitropical genus Munroa (Poaceae, Chloridoideae). Botanical Journal of the Linnean Society, 179(1), 110–125.

    Article  Google Scholar 

  • Amico, G. C. (2007). Variación geográfica en la coloración de los frutos del muérdago Tristerix corymbosus (Loranthaceae): Efecto de la historia evolutiva, del ambiente, de los dispersores de semillas y de los hospedadores. Doctoral thesis. National University of Comahue.

  • Baranzelli, M. C., Johnson, L. A., Cosacov, A., & Sérsic, A. N. (2014). Historical and ecological divergence among populations of Monttea chilensis (Plantaginaceae), an endemic endangered shrub bordering the Atacama Desert, Chile. Evolutionary Ecology, 28(4), 751–774.

    Article  Google Scholar 

  • Baranzelli, M. C., Cosacov, A., Ferreiro, G., Johnson, L. A., & Sérsic, A. N. (2017). Travelling to the south: phylogeographic spatial diffusion model in Monttea aphylla (Plantaginaceae), an endemic plant of the Monte Desert. PLoS One, 12(6), e0178827.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barker, N. P., Von Senger, I., Howis, S., Zachariades, C., & Ripley, B. S. (2005). Plant phylogeography based on rDNA ITS sequence data: two examples from the Asteraceae. REGNUM VEGETABILE, 143, 217.

    Google Scholar 

  • Barreda, V., & Palazzesi, L. (2007). Patagonian vegetation turnovers during the Paleogene-early Neogene: origin of arid-adapted floras. The Botanical Review, 73(1), 31–50.

    Article  Google Scholar 

  • Barreda, V., Guler, V., & Palazzesi, L. (2008). Late Miocene continental and marine palynological assemblages from Patagonia. Developments in Quaternary Sciences, 11, 343–350.

    Article  Google Scholar 

  • Blisniuk, P. M., Stern, L. A., Chamberlain, C. P., Idleman, B., & Zeitler, P. K. (2005). Climatic and ecologic changes during Miocene surface uplift in the Southern Patagonian Andes. Earth and Planetary Science Letters, 230(1), 125–142.

    Article  CAS  Google Scholar 

  • Cabrera, A., & Willink, A. (1980). Biogeografía de América Latina. Secretaría General de la organización de los Estados Americanos. Serie de Biología. Monografías nro, 13.

  • Cavieres, L. A., & Peñaloza, A. (1998). Efecto nodriza del cojín Laretia acaulis (Umbelliferae) en la zona alto-andina. Revista Chilena de Historia Natural, 71, 337–347.

    Google Scholar 

  • Chacón, J., de Assis, M. C., Meerow, A. W., & Renner, S. S. (2012). From east Gondwana to Central America: historical biogeography of the Alstroemeriaceae. Journal of Biogeography, 39(10), 1806–1818.

    Article  Google Scholar 

  • Chandler, G. T., Bayer, R. J., & Crisp, M. D. (2001). A molecular phylogeny of the endemic Australian genus Gastrolobium (Fabaceae: Mirbelieae) and allied genera using chloroplast and nuclear markers. American Journal of Botany, 88(9), 1675–1687.

    Article  CAS  PubMed  Google Scholar 

  • Conterato, I. F., Sfoggia Miotto, S. T., & Schifino-Wittmann, M. T. (2007). Chromosome number, karyotype, and taxonomic considerations on the enigmatic Sellocharis paradoxa Taubert (Leguminosae, Papilionoideae, Genisteae). Botanical Journal of the Linnean Society, 155(2), 223–226.

    Article  Google Scholar 

  • Cosacov, A., Sérsic, A. N., Sosa, V., De-Nova, J. A., Nylinder, S., & Cocucci, A. A. (2009). New insights into the phylogenetic relationships, character evolution, and phytogeographic patterns of Calceolaria (Calceolariaceae). American Journal of Botany, 96(12), 2240–2255.

    Article  PubMed  Google Scholar 

  • Cosacov, A., Sérsic, A. N., Sosa, V., Johnson, L. A., & Cocucci, A. A. (2010). Multiple periglacial refugia in the Patagonian steppe and post-glacial colonization of the Andes: the phylogeography of Calceolaria polyrhiza. Journal of Biogeography, 37, 1463–1477.

    Google Scholar 

  • Cosacov, A., Johnson, L. A., Paiaro, V., Cocucci, A. A., Córdoba, F. E., & Sérsic, A. N. (2013). Precipitation rather than temperature influenced the phylogeography of the endemic shrub Anarthrophyllum desideratum in the Patagonian steppe. Journal of Biogeography, 40, 168–182.

    Article  Google Scholar 

  • Cosacov, A., Cocucci, A. A., & Sérsic, A. N. (2014). Geographical differentiation in floral traits across the distribution range of the Patagonian oil-secreting Calceolaria polyrhiza: do pollinators matter? Annals of Botany, 113(2), 251–266.

    Article  PubMed  Google Scholar 

  • Cronk, Q., & Ojeda, I. (2008). Bird-pollinated flowers in an evolutionary and molecular context. Journal of Experimental Botany, 59(4), 715–727.

    Article  CAS  PubMed  Google Scholar 

  • Cruden, R. W. (1972). Pollinators in high-elevation ecosystems: relative effectiveness of birds and bees. Science, 176(4042), 1439–1440.

    Article  CAS  PubMed  Google Scholar 

  • Currat, M., Ruedi, M., Petit, R. J., & Excoffier, L. (2008). The hidden side of invasions: massive introgression by local genes. Evolution, 62(8), 1908–1920.

    PubMed  Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dormer, K. J. (1946). Vegetative morphology as a guide to the classification of the Papilionatae. New Phytologist, 45, 145.

    Article  Google Scholar 

  • Doyle, J. J. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem bull, 19, 11–15.

    Google Scholar 

  • Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezcurra, C. (2002). Phylogeny, morphology, and biogeography of Chuquiraga, an Andean-Patagonian genus of Asteraceae-Barnadesioideae. The Botanical Review, 68(1), 153–170.

    Article  Google Scholar 

  • Ezcurra, E., Montana, C., & Arizaga, S. (1991). Architecture, light interception, and distribution of Larrea species in the Monte Desert, Argentina. Ecology, 72(1), 23–34.

    Article  Google Scholar 

  • Ferreiro, G., Baranzelli, M. C., Sérsic, A. N., & Cocucci, A. A. (2015). Clinal variability of oil and nectar rewards in Monttea aphylla (Plantaginaceae): relationships with pollinators and climatic factors in the Monte desert. Botanical Journal of the Linnean Society, 178, 314–328.

    Article  Google Scholar 

  • Fountain, D. K. (2008). Phylogenetic and biogeographic analysis of the enigmatic monotypic plant genus Sellocharis Taub, (Papilionoideae -Leguminosae). Undergraduate project. University of Oxford.

  • Gagnon, E., Hughes, C. E., Lewis, G. P., & Bruneau, A. (2015). A new cryptic species in a new cryptic genus in the Caesalpinia group (Leguminosae) from the seasonally dry inter-Andean valleys of South America. Taxon, 64(3), 468–490.

    Article  Google Scholar 

  • Gibbard, P., & Cohen, K. M. (2008). Global chronostratigraphical correlation table for the last 2.7 million years. Episodes, 31(2), 243–247.

    Google Scholar 

  • Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24(5), 774–786.

    Article  Google Scholar 

  • Guindon, S., Lethiec, F., Duroux, P., & Gascuel, O. (2005). PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Research, 33, 557–559.

    Article  Google Scholar 

  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hamilton, M. (1999). Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology, 8, 513–525.

    Article  Google Scholar 

  • Hartley, A. J., Chong, G., Houston, J., & Mather, A. E. (2005). 150 million years of climatic stability: evidence from the Atacama Desert, northern Chile. Journal of the Geological Society, 162(3), 421–424.

    Article  Google Scholar 

  • Heled, J., & Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27(3), 570–580.

    Article  CAS  PubMed  Google Scholar 

  • Hoorn, C., Wesselingh, F. P., Ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., & Jaramillo, C. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330(6006), 927–931.

    Article  CAS  PubMed  Google Scholar 

  • Houston, J., & Hartley, A. J. (2003). The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. International Journal of Climatology, 23(12), 1453–1464.

    Article  Google Scholar 

  • Hughes, C., & Eastwood, R. (2006). Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences, 103(27), 10334–10339.

    Article  CAS  Google Scholar 

  • Jakob, S. S., Martinez-Meyer, E., & Blattner, F. R. (2009). Phylogeographic analyses and paleodistribution modeling indicate Pleistocene in situ survival of Hordeum species (Poaceae) in southern Patagonia without genetic or spatial restriction. Molecular Biology and Evolution, 26(4), 907–923.

    Article  CAS  PubMed  Google Scholar 

  • Kay, K. M., Whittall, J. B., & Hodges, S. A. (2006). A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evolutionary Biology, 6(1), 36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koenen, E. J. M., De Vos, J. M., Atchison, G. W., Simon, M. F., Schrire, B. D., De Souza, E. R., & Hughes, C. E. (2013). Exploring the tempo of species diversification in legumes. South African Journal of Botany, 89, 19–30.

    Article  Google Scholar 

  • Labraga, J. C., & Villalba, R. (2009). Climate in the Monte Desert: past trends, present conditions, and future projections. Journal of Arid Environments, 73(2), 154–163.

    Article  Google Scholar 

  • Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A., & Davis, C. C. (2016). The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytologist, 210(4), 1430–1442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavin, M., Herendeen, P. S., & Wojciechowski, M. F. (2005). Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Systematic Biology, 54(4), 575–594.

    Article  PubMed  Google Scholar 

  • León, R. J., Bran, D., Collantes, M., Paruelo, J. M., & Soriano, A. (1998). Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral, 8(2), 125–144.

    Google Scholar 

  • Lewis, G., Schrire, B., Mackinder, B., & Lock, M. (Eds.). (2005). Legumes of the world (vol. 577). Richmond, UK: Royal Botanic Gardens, Kew.

  • Martínez Carretero, E. (2004). La provincia fitogeográfica de la Payunia. Boletín de la Sociedad Argentina de Botánica, 39(3–4), 195–226.

    Google Scholar 

  • Martins, A. C., Scherz, M. D., & Renner, S. S. (2014). Several origins of floral oil in the Angelonieae, a southern hemisphere disjunct clade of Plantaginaceae. American Journal of Botany, 101(12), 2113–2120.

    PubMed  Google Scholar 

  • Miotto, S. T. S., & Ludtke, R. (2008). A família Leguminosae no Parque Estadual de Itapuã, Viamão, Rio Grande do Sul, Brasil. Revista Brasileira de Biociências, 6(3).

  • Moré, M., Cocucci, A. A., Sérsic, A. N., & Barboza, G. E. (2015). Phylogeny and floral trait evolution in Jaborosa (Solanaceae). Taxon, 64(3), 523–534.

    Article  Google Scholar 

  • Morrone, J. J. (2006). Biogeographic areas and transition zones of Latin America and the Caribbean islands based on panbiogeographic and cladistic analyses of the entomofauna. Annual Review Entomology, 51, 467–494.

    Article  CAS  Google Scholar 

  • Morrone, J. J. (2015). Biogeographical regionalisation of the Andean region. Zootaxa, 3936(2), 207–236.

    Article  PubMed  Google Scholar 

  • Muchhala, N. (2003). Exploring the boundary between pollination syndromes: bats and hummingbirds as pollinators of Burmeistera cyclostigmata and B. tenuiflora (Campanulaceae). Oecologia, 134(3), 373–380.

    Article  PubMed  Google Scholar 

  • Nielsen, R. (2002). Mapping mutations on phylogenies. Systematic Biology, 51, 729–739.

    Article  PubMed  Google Scholar 

  • Nosil, P. (2012). Ecological speciation. Oxford University Press.

  • Oliva, G., González, L., Rial, P., & Livraghi, E. (2001). Áreas ecológicas de Santa Cruz y tierra del Fuego. Ganadería ovina sustentable en la Patagonia Austral, 41–62.

  • Ortiz-Jaureguizar, E., & Cladera, G. A. (2006). Paleoenvironmental evolution of southern South America during the Cenozoic. Journal of Arid Environments, 66, 498–532.

    Article  Google Scholar 

  • Paiaro, V. (2010). Gradientes ambientales y márgenes de distribución: patrones espaciales de variabilidad fenotípica, atributos poblacionales y caracteres reproductivos en Anarthrophyllum desideratum (dc) benth. Doctoral Thesis. National University of Córdoba.

  • Paiaro, V., Oliva, G. E., Cocucci, A. A., & Sérsic, A. N. (2012a). Caracterización y variación espacio-temporal del néctar en anarthrophyllum desideratum (Fabaceae): Influencia del clima y los polinizadores. Boletín de la Sociedad Argentina de Botánica, 47(3–4), 375–387.

    Google Scholar 

  • Paiaro, V., Oliva, G. E., Cocucci, A. A., & Sérsic, A. N. (2012b). Geographic patterns and environmental drivers of flower and leaf variation in an endemic legume of southern Patagonia. Plant Ecology & Diversity, 5(1), 13–25.

    Article  Google Scholar 

  • Palmer, J. D. (1991). Plastid chromosomes: structure and evolution. The molecular biology of plastids, 7, 5–53.

    Article  Google Scholar 

  • Rabassa, J. (2008). Late Cenozoic glaciations in Patagonia and Tierra del Fuego. Developments in quaternary sciences, 11, 151–204.

    Article  Google Scholar 

  • Rambaut, A., & Drummond, A. (2008). FigTree: tree figure drawing tool, version 1.2. 2. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree

  • Rambaut, A., & Drummond, A. J. (2009). Tracer v1.5.0. Available at: http://beast.bio.ed.ac.uk/Tracer.

  • Ramos, V. A., & Ghiglione, M. C. (2008). Tectonic evolution of the Patagonian Andes. Developments in Quaternary Sciences, 11, 57–71.

    Article  Google Scholar 

  • Ramos, M. E., Folguera, A., Fennell, L., Giménez, M., Litvak, V. D., Dzierma, Y., & Ramos, V. A. (2014). Tectonic evolution of the North Patagonian Andes from field and gravity data (39–40 S). Journal of South American Earth Sciences, 51, 59–75.

    Article  CAS  Google Scholar 

  • Revell, L. J. (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223.

    Article  Google Scholar 

  • Revell, L. J. (2014). Ancestral character estimation under the threshold model from quantitative genetics. Evolution, 68(3), 743–759.

    Article  PubMed  Google Scholar 

  • Roig, F. A., Roig-Juñent, S., & Corbalán, V. (2009). Biogeography of the Monte desert. Journal of Arid Environments, 73(2), 164–172.

    Article  Google Scholar 

  • Roig-Juñent, S., Carrara, R., Ruiz-Manzanos, E., Agrain, F., Sackmann, P., & Tognelli, M. F. (2007). Phylogenetic relationships and biogeographic considerations of four new species of Cnemalobus (Coleoptera: Carabidae) from Patagonia. Insect Systematics & Evolution, 38(3), 267–292.

    Article  Google Scholar 

  • Roig-Juñent, S., Tognelli, M. F., & Morrone, J. J. (2008). Aspectos biogeográficos de los insectos de la Argentina. Biodiversidad de artrópodos argentinos, 2, 11–29.

    Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Rozzi, R., Arroyo, M. K., & Armesto, J. J. (1997). Ecological factors affecting gene flow between populations of Anarthrophyllum cumingii (Papilionaceae) growing on equatorial-and polar-facing slopes in the Andes of Central Chile. Plant Ecology, 132(2), 171–179.

    Article  Google Scholar 

  • Ruthsatz, B. (1978). Las plantas en cojín de los semi-desiertos andinos del Noroeste Argentino: Su distribución local como adaptación a los factores climáticos, edáficos y antopogénicos de sus ambientes. Darwin, 491–539.

  • Särkinen, T., Pennington, R. T., Lavin, M., Simon, M. F., & Hughes, C. E. (2012). Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography, 39(5), 884–900.

    Article  Google Scholar 

  • Sarmiento, G. (1975). The dry plant formations of South America and their floristic connections. Journal of Biogeography, 233–251.

  • Schemske, D. W., & Bradshaw, H. D. (1999). Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proceedings of the National Academy of Sciences, 96(21), 11910–11915.

    Article  CAS  Google Scholar 

  • Sede, S. M., Nicola, M. V., Pozner, R., & Johnson, L. A. (2012). Phylogeography and palaeodistribution modelling in the Patagonian steppe: the case of Mulinum spinosum (Apiaceae). Journal of Biogeography, 39(6), 1041–1057.

    Article  Google Scholar 

  • Simmons, M. P., & Ochoterena, H. (2000). Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology, 49(2), 369–381.

    Article  CAS  PubMed  Google Scholar 

  • Snak, C., Vatanparast, M., Silva, C., Lewis, G. P., Lavin, M., Kajita, T., & de Queiroz, L. P. (2016). A dated phylogeny of the papilionoid legume genus Canavalia reveals recent diversification by a pantropical liana lineage. Molecular Phylogenetics and Evolution, 98, 133–146.

    Article  PubMed  Google Scholar 

  • Sorarú, S. B. (1974). Revisión de Anarthrophyllum, género argentino-chileno de Leguminosas. Darwin, 18(3/4), 453–488.

    Google Scholar 

  • Streisfeld, M. A., & Kohn, J. R. (2007). Environment and pollinator-mediated selection on parapatric floral races of Mimulus aurantiacus. Journal of Evolutionary Biology, 20(1), 122–132.

    Article  CAS  PubMed  Google Scholar 

  • Terra-Araujo, M. H., de Faria, A. D., Vicentini, A., Nylinder, S., & Swenson, U. (2015). Species tree phylogeny and biogeography of the Neotropical genus Pradosia (Sapotaceae, Chrysophylloideae). Molecular Phylogenetics and Evolution, 87, 1–13.

    Article  PubMed  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson, J. D., & Wilson, P. (2008). Explaining evolutionary shifts between bee and hummingbird pollination: convergence, divergence, and directionality. International Journal of Plant Sciences, 169(1), 23–38.

    Article  Google Scholar 

  • Thulin, M., & Lavin, M. (2001). Phylogeny and biogeography of the Ormocarpum group (Fabaceae): a new genus Zygocarpum from the Horn of Africa region. Systematic Botany, 26(2), 299–317.

    Google Scholar 

  • van der Niet, T., & Johnson, S. D. (2012). Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends in Ecology & Evolution, 27(6), 353–361.

    Article  Google Scholar 

  • Villagrán, C., & Hinojosa, L. F. (1997). Historia de los bosques del sur de Sudamérica, II: Análisis fitogeográfico. Revista Chilena de Historia Natural, 70(2), 1–267.

    Google Scholar 

  • Wojciechowski, M. F., Lavin, M., & Sanderson, M. J. (2004). A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. American Journal of Botany, 91(11), 1846–1862.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y., Harris, A. J., & He, X. J. (2010). S-DIVA (statistical dispersal-vicariance analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution, 56(2), 848–850.

    Article  PubMed  Google Scholar 

  • Yu, Y., Harris, A. J., Blair, C., & He, X. (2015). RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution, 87, 46–49.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank G. Hunzicker for assistance in sample collection. F. A. as a doctoral fellowship holder, M.C.B. as postdoctoral scholarship holder, and A.A.C. and A.N.S. as researchers acknowledge the National Research Council of Argentina (CONICET). This work was supported by the National Research Council of Argentina (PIP 201101-00245; A.N.S.), National Ministry of Science and Technology (FONCYT-PICT-2011-0837; A.N.S.). We are grateful to J. Schwantz for helping us to spot the extremely rare S. paradoxa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matias C. Baranzelli.

Electronic supplementary material

Table S1

List of CORD specimens of Anarthrophyllum studied. Data collection and voucher information are also indicated. (PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achimón, F., Johnson, L.A., Cocucci, A.A. et al. Species tree phylogeny, character evolution, and biogeography of the Patagonian genus Anarthrophyllum Benth. (Fabaceae). Org Divers Evol 18, 71–86 (2018). https://doi.org/10.1007/s13127-017-0355-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-017-0355-1

Keywords

Navigation