Skip to main content
Log in

Octad pollen formation in Cymbopetalum (Annonaceae): the binding mechanism

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Our recent study of tetrad pollen formation in Annona (Annonaceae) revealed that after meiosis the callose-cellulose envelope forms a special conjugation with individual microspores and the forthcoming callose digestion is incomplete. The undigested part forms a central binder holding the four microspores of the tetrad together. This process causes the microspores to rotate 180 degrees. In this paper we describe pollen formation in another annonaceous genus, Cymbopetalum, in which the pollen is shed in octads, through use of light microscopy, epifluorescence microscopy, and TEM. In Cymbopetalum, two meiocytes, connected by abundant cytomictic channels, are produced in each sporangium. Octad pollen formation in Cymbopetalum is shown to be comparable to the synchronized formation of two connected Annona tetrads, which then integrate into a single octad. Unique features of Annona polyad formation, e.g. special binding between the callose-cellulose envelopes and microspores, incomplete callose digestion, and microspore rotation, also occur in Cymbopetalum. In addition, formation of the Cymbopetalum octad involves development of a cushion-like structure that binds the distal pronexine of all eight microspores, and there is the production of intine protrusions. The evolutionary origin of the callose-cellulose binding mechanism within the family is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. O. Dahl J. R. Rowley (1991) ArticleTitleMicrospore development in Calluna (Ericaceae) Exine formation. Ann. Sci. Nat. Bot., Paris, 13e serie 11 155–176

    Google Scholar 

  • G. L. Davis (1966) Systematic embryology of the angiosperms John Wiley & Sons New York London Sydney

    Google Scholar 

  • J. A. Doyle P. Bygrave A. Le Thomas (2000) Implications of molecular data for pollen evolution in Annonaceae M. M. Harley C. M. Morton S. Blackmore (Eds) Pollen and spores: morphology and biology Royal Botanic Gardens Kew 259–284

    Google Scholar 

  • J. A. Doyle A. Le Thomas (1994) ArticleTitleCladistic analysis and pollen evolution in Annonaceae Acta Bot. Gallica 141 149–170

    Google Scholar 

  • J. A. Doyle A. Le Thomas (1996) ArticleTitlePhylogenetic analysis and character evolution in Annonaceae Bulletin du Museum national d'Histoire naturelle, section B, Adansonia 18 279–334

    Google Scholar 

  • C. Furness P. J. Rudall (2001) ArticleTitleThe tapetum in basal angiosperms: early diversity Int. J. Pl. Sci. 162 375–392 Occurrence Handle10.1086/319580

    Article  Google Scholar 

  • C. Furness P. J. Rudall F. B. Sampson (2002) ArticleTitleEvolution of microsporogenesis in angiosperms Int. J. Pl. Sci. 163 235–260 Occurrence Handle10.1086/338322

    Article  Google Scholar 

  • N. I. Gabarayeva (1992) ArticleTitleSporoderm development in Asimina triloba (Annonaceae). I. The developmental events before callose dissolution Grana 31 213–222 Occurrence Handle10.1080/00173139209432033

    Article  Google Scholar 

  • N. I. Gabarayeva (1993) ArticleTitleSporoderm development in Asimina triloba (Annonaceae). II. The developmental events after callose dissolution Grana 32 210–220

    Google Scholar 

  • N. I. Gabarayeva (1995) ArticleTitlePollen wall and tapetum development in Anaxagorea brevipes (Annonaceae): sporoderm substructure, cytoskelon, sporopollenin precursor particles, and the endexine problem Rev. Palaeobot. Palynol. 85 123–152 Occurrence Handle10.1016/0034-6667(94)00125-4

    Article  Google Scholar 

  • D. M. Johnson N. A. Murray (1995) ArticleTitleSynopsis of the tribe Bocageeae (Annonaceae), with revisions of Cardiopetalum, Froesiodendron, Trigynaea, Bocagea, and Horschunchia Brittonia 47 248–319 Occurrence Handle10.2307/2807118

    Article  Google Scholar 

  • J. Kenrick R. B. Knox (1979) ArticleTitlePollen development and cytochemistry in some Australian species of Acacia Austral. J. Bot. 27 413–427 Occurrence Handle10.1071/BT9790413

    Article  Google Scholar 

  • R. B. Knox E. Friederich (1974) ArticleTitleTetrad pollen grain development and sterility in Leschenaultia formosa (Goodeniaceae) New Phytol. 73 251–258 Occurrence Handle10.1111/j.1469-8137.1974.tb04622.x

    Article  Google Scholar 

  • R. B. Knox C. A. McConchie (1986) Structure and function of compound pollen S. Blackmore I. K. Ferguson (Eds) Pollen and spores, form and function Academic Press London 264–282

    Google Scholar 

  • A. Le Thomas (1980) ArticleTitleUltrastructural characters of the pollen grains of African Annonaceae and their significance for the phylogeny of primitive angiosperms (first part) Pollen Spores 22 267–342

    Google Scholar 

  • A. Le Thomas (1981) ArticleTitleUltrastructural characters of the pollen grains of African Annonaceae and their significance for the phylogeny of primitive angiosperms (second part) Pollen Spores 23 5–36

    Google Scholar 

  • A. Le Thomas W. Morawetz M. Waha (1986) Pollen of palaeo- and neotropical Annonaceae: definition of the aperture by morphological and functional characters S. Blackmore I. K. Ferguson (Eds) Pollen and spores, form and function Academic Press London 375–388

    Google Scholar 

  • J. B. Mols B. Gravendeel L. W. Chatrou M. D. Pirie P. C. Bygrave M. W. Chase P. J. A. Keßler (2004) ArticleTitleIdentifying clades in Asian Annonaceae: monophyletic genera in the polyphyletic Miliuseae Amer. J. Bot. 91 590–600

    Google Scholar 

  • W. Morawetz M. Hesse (1984) Primäre und sekundäre Aperturen bei Angiospermenpollen C. Clement E. Pacini J.-C. Audran (Eds) Anthere and pollen, from biology to biotechnology Springer Berlin 119–218

    Google Scholar 

  • N. A. Murray (1993) ArticleTitleRevision of Cymbopetalum and Porcelia (Annonaceae) Syst. Bot. Mongr. 40 1–121

    Google Scholar 

  • F. Roland (1979) ArticleTitleThe detailed structure and ultrastructure of an acalymmate tetrad Grana 11 41–44

    Google Scholar 

  • F. B. Sampson (1977) ArticleTitlePollen tetrads of Hedycarya arborea J. R. et G. Forst (Monimiaceae) Grana 16 61–73

    Google Scholar 

  • F. B. Sampson (1981) ArticleTitleSynchronous versus asynchronous mitosis within permanent pollen tetrads of the Winteraceae Grana 20 19–23

    Google Scholar 

  • J. J. Skvarla D. A. Larson (1963) ArticleTitleNature of cohesion within pollen tetrads of Typha latifolia Science 140 173–175 Occurrence Handle10.1126/science.140.3563.173 Occurrence Handle17819833

    Article  PubMed  Google Scholar 

  • J. J. Skvarla P. H. Raven J. Praglowski (1975) ArticleTitleThe evolution of pollen tetrads in Onagraceae Amer. J. Bot. 62 6–35 Occurrence Handle10.2307/2442074

    Article  Google Scholar 

  • H. Takahashi (1988) ArticleTitleOntogenetic development of pollen tetrads of Drosera capensis L Bot. Gaz. 149 275–282 Occurrence Handle10.1086/337715

    Article  Google Scholar 

  • H. Takahashi K. Sohma (1980) ArticleTitlePollen development in Pyrola japonica Klenze Sci. Rep. Tohoku Univ., Ser. IV (Biology) 38 57–71

    Google Scholar 

  • H. Takahashi K. Sohma (1982) ArticleTitlePollen morphology of the Droseraceae and its related taxa Sci. Rep. Tohoku Univ., Ser. IV (Biology) 38 81–156

    Google Scholar 

  • H. Takahashi K. Sohma (1984) ArticleTitleDevelopment of pollen tetrad in Typha latifolia L Pollen Spores 26 5–18

    Google Scholar 

  • C.-H. Tsou Y. L. Fu (2002) ArticleTitleCompound pollen formation in Annona (Annonaceae): proexine formation and binding mechanism Amer. J. Bot. 89 734–747

    Google Scholar 

  • C.-H. Tsou D. M. Johnson (2003) ArticleTitleComparative development of aseptate and septate anthers of Annonaceae Amer. J. Bot. 90 832–848

    Google Scholar 

  • E. C. H. Heusden ParticleVan (1992) ArticleTitleFlowers of Annonaceae: morphology, classification, and evolution Blumea Suppl. 7 1–218

    Google Scholar 

  • M. Waha (1987) ArticleTitleSporoderm development of pollen tetrads in Asimina triloba (Annonaceae) Pollen Spores 29 31–44

    Google Scholar 

  • M. Waha W. Morawetz (1988) ArticleTitlePollen evolution and systematics in Annonaceae with special reference to the disulcate Australian endemic genera Pl. Syst. Evol. 161 1–12 Occurrence Handle10.1007/BF00936007

    Article  Google Scholar 

  • Walker J. W. (1971a) Pollen morphology, phytogeography, and phylogeny of the Annonaceae. Contr. Gray Herb. 202: 1–131.

    Google Scholar 

  • Walker J. W. (1971b) Unique type of angiosperm pollen from the family Annonaceae. Science 172: 565–567.

    Google Scholar 

  • J. W. Walker (1974) ArticleTitleAperture evolution in the pollen of primitive angiosperms Amer. J. Bot. 61 1112–1136 Occurrence Handle10.2307/2441929

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. -H. Tsou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsou, C.H., Fu, Y.L. Octad pollen formation in Cymbopetalum (Annonaceae): the binding mechanism. Plant Syst. Evol. 263, 13–23 (2007). https://doi.org/10.1007/s00606-006-0471-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-006-0471-4

Keywords

Navigation