Skip to main content
Log in

On the Cauchy problem for the fractional Camassa–Holm equation

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we consider the Cauchy problem for the fractional Camassa–Holm equation which models the propagation of small-but-finite amplitude long unidirectional waves in a nonlocally and nonlinearly elastic medium. Using Kato’s semigroup approach for quasilinear evolution equations, we prove that the Cauchy problem is locally well-posed for data in \(H^{s}({\mathbb {R}})\), \(s>{\frac{5}{2}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  2. Constantin, A., Escher, J.: On the Cauchy problem for a family of quasilinear hyperbolic equations. Commun. Partial Differ. Equ. 23, 1449–1458 (1998)

    Article  MathSciNet  Google Scholar 

  3. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  4. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa CI Sci. 4, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  6. Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    Article  MathSciNet  Google Scholar 

  7. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  Google Scholar 

  8. Duruk, N., Erkip, A., Erbay, H.A.: A higher-order Boussinesq equation in locally nonlinear theory of one-dimensional nonlocal elasticity. IMA J. Appl. Math. 74, 97–106 (2009)

    Article  MathSciNet  Google Scholar 

  9. Duruk, N., Erkip, A., Erbay, H.A.: Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity. Nonlinearity 23, 107–118 (2010)

    Article  MathSciNet  Google Scholar 

  10. Erbay, H.A., Erbay, S., Erkip, A.: Derivation of the Camassa–Holm equations for elastic waves. Phys. Lett. A 379, 956–961 (2015)

    Article  MathSciNet  Google Scholar 

  11. Erbay, H.A., Erbay, S., Erkip, A.: Derivation of generalized Camassa–Holm equations from Boussinesq-type equations. J. Non-linear Math. Phys. 23(3), 314–322 (2016)

    Article  MathSciNet  Google Scholar 

  12. Hur, V.M., Johnson, M.: Stability of periodic traveling waves for nonlinear dispersive equations. SIAM J. Math. Anal. 47(5), 3528–3554 (2013)

    Article  MathSciNet  Google Scholar 

  13. Ionescu-Kruse, D.: Variational derivation of the Camassa–Holm shallow water equation. J. Non-linear Math. Phys. 14, 303–312 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Johnson, R.S.: Camassa–Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    Article  MathSciNet  Google Scholar 

  15. Johnson, R.S.: A selection of nonlinear problems in water waves, analysed by perturbation-parameter techniques. Commun. Pure Appl. Anal. 11, 1497–1522 (2012)

    Article  MathSciNet  Google Scholar 

  16. Johnson, M.A.: Stability of small periodic waves in fractional KdV type equations. SIAM J. Math. Anal. 45(5), 3168–3193 (2013)

    Article  MathSciNet  Google Scholar 

  17. Kapitula, T., Stefanov, A.: A Hamiltonian–Krein (instability) index theory for solitary waves to KdV-like eigenvalue problems. Stud. Appl. Math. 132, 183211 (2014)

    Article  MathSciNet  Google Scholar 

  18. Kato T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral Theory and Differential Equations. Lecture Notes in Mathematics, vol. 448 pp. 25-70. Springer, Berlin (1975)

    Google Scholar 

  19. Kato, T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Stud. Appl. Math. 8, 93–126 (1983)

    MathSciNet  Google Scholar 

  20. Klein, C., Saut, J.C.: A numerical approach to blow-up issues for dispersive perturbations of Burgers equation. Phys. D Nonlinear Phenom. 295–296, 46–65 (2015)

    Article  MathSciNet  Google Scholar 

  21. Lannes, D.: The Water Waves Problem: Mathematical Analysis and Asymptotics. AMS Mathematical Surveys and Monographs, vol. 188. American Mathematical Society, Providence (2013)

    MATH  Google Scholar 

  22. Linares, F., Pilod, D., Saut, J.C.: Dispersive perturbations of Burgers and hyperbolic equations I: local theory. SIAM J. Math. Anal. 46, 1505–1537 (2014)

    Article  MathSciNet  Google Scholar 

  23. Linares, F., Pilod, D., Saut, J.C.: Remarks on the orbital stability of ground state solutions of fKdV and related equations. Adv. Differ. Equ. 20, 9–10 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Li, J., Shi, S.: Local well-posedness for the dispersion generalized periodic KdV equation. J. Math. Anal. Appl. 379, 706–718 (2011)

    Article  MathSciNet  Google Scholar 

  25. Pava, J.A.: Stability properties of solitary waves for fractional KdV and BBM equations. Nonlinearity 31, 920–956 (2018)

    Article  MathSciNet  Google Scholar 

  26. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  Google Scholar 

  27. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Volume I: Functional Analysis. Academic Press, Cambridge (1972)

    MATH  Google Scholar 

  28. Taylor, M.: Commutator estimates. Proc. Am. Math. Soc. 131, 1501–1507 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Duruk Mutlubaş.

Additional information

Communicated by A. Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutlubaş, N.D. On the Cauchy problem for the fractional Camassa–Holm equation. Monatsh Math 190, 755–768 (2019). https://doi.org/10.1007/s00605-019-01278-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-019-01278-6

Keywords

Mathematics Subject Classification

Navigation