Skip to main content

Advertisement

Log in

Sandwich immunoassay based on antimicrobial peptide-mediated nanocomposite pair for determination of Escherichia coli O157:H7 using personal glucose meter as readout

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sandwich immunoassay was developed for determination of E. coli O157:H7. This is based on an antimicrobial peptide-mediated nanocomposite pair and uses a personal glucose meter as signal readout. The antimicrobial peptides, magainins I, and cecropin P1 were employed as recognition molecules for the nanocomposite pair, respectively. With a one-step process, copper phosphate nanocomposites embedded by magainins I and Fe3O4 were used as “capturing” probes for bacterial magnetic isolation, and calcium phosphate nanocomplexes composed of cecropin P1 and invertase were used as signal tags. After magnetic separation, the invertase of the signal tags hydrolyzed sucrose to glucose, thereby converting E. coli O157:H7 levels to glucose levels. This latter can be quantified by a personal glucose meter. Under optimal conditions, the concentration of E. coli O157:H7 can be determined in a linear range of 10 to 107 CFU·mL−1 with a detection limit of 10 CFU·mL−1. The method was successfully applied to the determination of E. coli O157:H7 in milk samples.

Schematic representation of sandwich immunoassay for E. coli O157:H7. One-pot synthetic of Fe3O4-magainins I nanocomposites (MMP) were used for magnetic capture. Cecropin P1-invertase nanocomposites (PIP) were used as signal tags. A personal glucose meter was used as readout to determine the target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pop M, Walker AW, Paulson J, Lindsay B, Antonio M, Hossain MA, Oundo J, Tamboura B, Mai V, Astrovskaya I, Bravo HC, Rance R, Stares M, Levine MM, Panchalingam S, Kotloff K, Ikumapayi UN, Ebruke C, Adeyemi M, Ahmed D, Ahmed F, Alam MT, Amin R, Siddiqui S, Ochieng JB, Ouma E, Juma J, Mailu E, Omore R, Morris JG, Breiman RF, Saha D, Parkhill J, Nataro JP, Stine OC (2014) Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota composition. Genome Biol 15(6):R76. https://doi.org/10.1186/gb-2014-15-6-r76

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lupindu AM (2018) Epidemiology of Shiga toxin-producing Escherichia coli O157:H7 in Africa in review. South Afr J Infect Dis 33(1):24–30. https://doi.org/10.1080/23120053.2017.1376558

    Article  Google Scholar 

  3. Zhu G, Yan B, Xing M, Tian C (2018) Automated counting of bacterial colonies on agar plates based on images captured at near-infrared light. J Microbiol Methods 153:66–73. https://doi.org/10.1016/j.mimet.2018.09.004

    Article  PubMed  Google Scholar 

  4. Rusak LA, de Castro Lisboa Pereira R, Freitag IG, Hofer CB, Hofer E, Asensi MD, Vallim DC (2018) Rapid detection of Yersinia enterocolitica serotype O:3 using a duplex PCR assay. J Microbiol Methods 154:107–111. https://doi.org/10.1016/j.mimet.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  5. Kumar BK, Raghunath P, Devegowda D, Deekshit VK, Venugopal MN, Karunasagar I, Karunasagar I (2011) Development of monoclonal antibody based sandwich ELISA for the rapid detection of pathogenic Vibrio parahaemolyticus in seafood. Int J Food Microbiol 145(1):244–249. https://doi.org/10.1016/j.ijfoodmicro.2010.12.030

    Article  CAS  PubMed  Google Scholar 

  6. Shahdordizadeh M, Taghdisi SM, Ansari N, Alebooye Langroodi F, Abnous K, Ramezani M (2017) Aptamer based biosensors for detection of Staphylococcus aureus. Sensors Actuators B Chem 241:619–635. https://doi.org/10.1016/j.snb.2016.10.088

    Article  CAS  Google Scholar 

  7. Tao Y, Yang J, Chen L, Huang Y, Qiu B, Guo L, Lin Z (2018) Dialysis assisted ligand exchange on gold nanorods: amplification of the performance of a lateral flow immunoassay for E. coli O157:H7. Microchim Acta 185(7):350. https://doi.org/10.1007/s00604-018-2897-0

    Article  CAS  Google Scholar 

  8. Majdinasab M, Hayat A, Marty JL (2018) Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. TrAC Trends Anal Chem 107:60–77. https://doi.org/10.1016/j.trac.2018.07.016

    Article  CAS  Google Scholar 

  9. Park KS (2018) Nucleic acid aptamer-based methods for diagnosis of infections. Biosens Bioelectron 102:179–188. https://doi.org/10.1016/j.bios.2017.11.028

    Article  CAS  PubMed  Google Scholar 

  10. Karimzadeh A, Hasanzadeh M, Shadjou N, Guardia MDL (2018) Peptide based biosensors. TrAC Trends Anal Chem 107:1–20. https://doi.org/10.1016/j.trac.2018.07.018

    Article  CAS  Google Scholar 

  11. Liu Q, Wang J, Boyd BJ (2015) Peptide-based biosensors. Talanta 136:114–127. https://doi.org/10.1016/j.talanta.2014.12.020

    Article  CAS  PubMed  Google Scholar 

  12. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462(1–2):55–70. https://doi.org/10.1016/s0005-2736(99)00200-x

    Article  CAS  PubMed  Google Scholar 

  13. Kulagina NV, Shaffer KM, Ligler FS, Taitt CR (2007) Antimicrobial peptides as new recognition molecules for screening challenging species. Sensors Actuators B Chem 121(1):150–157. https://doi.org/10.1016/j.snb.2006.09.044

    Article  CAS  Google Scholar 

  14. Liu X, Marrakchi M, Xu D, Dong H, Andreescu S (2016) Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria. Biosens Bioelectron 80:9–16. https://doi.org/10.1016/j.bios.2016.01.041

    Article  CAS  PubMed  Google Scholar 

  15. Zhou C, Zou H, Li M, Sun C, Ren D, Li Y (2018) Fiber optic surface plasmon resonance sensor for detection of E. coli O157:H7 based on antimicrobial peptides and AgNPs-rGO. Biosens Bioelectron 117:347–353. https://doi.org/10.1016/j.bios.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  16. Akinloye O, Krishnamurthy R, Wishart D, Goss GG (2017) Peptide-based fluorescence biosensors for detection/measurement of nanoparticles. Anal Bioanal Chem 409(4):903–915. https://doi.org/10.1007/s00216-016-0042-7

    Article  CAS  PubMed  Google Scholar 

  17. Qiao Z, Lei C, Fu Y, Li Y (2017) An antimicrobial peptide-based colorimetric bioassay for rapid and sensitive detection of E-coli O157:H7. RSC Adv 7(26):15769–15775. https://doi.org/10.1039/c6ra28362d

    Article  CAS  Google Scholar 

  18. de Miranda JL, Oliveira MDL, Oliveira IS, Frias IAM, Franco OL, Andrade CAS (2017) A simple nanostructured biosensor based on clavanin a antimicrobial peptide for gram-negative bacteria detection. Biochem Eng J 124:108–114. https://doi.org/10.1016/j.bej.2017.04.013

    Article  CAS  Google Scholar 

  19. Lv E, Ding J, Qin W (2018) Potentiometric detection of listeria monocytogenes via a short antimicrobial peptide pair-based sandwich assay. Anal Chem 90(22):13600–13606. https://doi.org/10.1021/acs.analchem.8b03809

    Article  CAS  PubMed  Google Scholar 

  20. Kulagina NV, Lassman ME, Ligler FS, Taitt CR (2005) Antimicrobial peptides for detection of bacteria in biosensor assays. Anal Chem 77(19):6504–6508. https://doi.org/10.1021/ac050639r

    Article  CAS  PubMed  Google Scholar 

  21. Mannoor MS, Tao H, Clayton JD, Sengupta A, Kaplan DL, Naik RR, Verma N, Omenetto FG, McAlpine MC (2012) Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 3:763. https://doi.org/10.1038/ncomms1767

    Article  CAS  PubMed  Google Scholar 

  22. Mannoor MS, Zhang S, Link AJ, McAlpine MC (2010) Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc Natl Acad Sci 107(45):19207–19212. https://doi.org/10.1073/pnas.1008768107

    Article  PubMed  Google Scholar 

  23. Ariza-Avidad M, Salinas-Castillo A, Capitán-Vallvey LF (2016) A 3D μPAD based on a multi-enzyme organic–inorganic hybrid nanoflower reactor. Biosens Bioelectron 77:51–55. https://doi.org/10.1016/j.bios.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  24. Wang LB, Wang Y-C, He R, Zhuang A, Wang X, Zeng J, Hou JG (2013) A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. J Am Chem Soc 135(4):1272–1275. https://doi.org/10.1021/ja3120136

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Chen J, Du M, Wang X, Ji X, He Z (2017) The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker. Biosens Bioelectron 92:68–73. https://doi.org/10.1016/j.bios.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  26. Zhang B, Chen J, Wang J, Huyan Y, Zhang H, Zhang Q (2018) Flowerlike BSA/Zn3(PO4)2/Fe3O4 magnetic hybrid particles: preparation and application to adsorption of copper ions. J Chem Eng Data 63(10):3913–3922. https://doi.org/10.1021/acs.jced.8b00544

    Article  CAS  Google Scholar 

  27. Ge J, Lei J, Zare RN (2012) Protein-inorganic hybrid nanoflowers. Nat Nanotechnol 7(7):428–432. https://doi.org/10.1038/nnano.2012.80

    Article  CAS  PubMed  Google Scholar 

  28. Ye R, Zhu C, Song Y, Song J, Fu S, Lu Q, Yang X, Zhu MJ, Du D, Li H, Lin Y (2016) One-pot bioinspired synthesis of all-inclusive protein-protein nanoflowers for point-of-care bioassay: detection of E. coli O157:H7 from milk. Nanoscale 8(45):18980–18986. https://doi.org/10.1039/c6nr06870g

    Article  CAS  PubMed  Google Scholar 

  29. Wei T, Du D, Zhu M-J, Lin Y, Dai Z (2016) An improved ultrasensitive enzyme-linked immunosorbent assay using hydrangea-like antibody-enzyme-inorganic three-in-one Nanocomposites. ACS Appl Mater Interfaces 8(10):6329–6335. https://doi.org/10.1021/acsami.5b11834

    Article  CAS  PubMed  Google Scholar 

  30. Wang K-Y, Bu S-J, Ju C-J, Li C-T, Li Z-Y, Han Y, Ma C-Y, Wang C-Y, Hao Z, Liu W-S, Wan J-Y (2018) Hemin-incorporated nanoflowers as enzyme mimics for colorimetric detection of foodborne pathogenic bacteria. Bioorg Med Chem Lett 28(23):3802–3807. https://doi.org/10.1016/j.bmcl.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  31. Bu S-J, Wang K-Y, Bai H-S, Leng Y, Ju C-J, Wang C-Y, Liu W-S, Wan J-Y (2019) Immunoassay for pathogenic bacteria using platinum nanoparticles and a hand-held hydrogen detector as transducer. Application to the detection of Escherichia coli O157:H7. Microchim Acta 186 (5):296. https://doi.org/10.1007/s00604-019-3409-6

  32. Gregory K, Mello CM (2005) Immobilization of Escherichia coli cells by use of the antimicrobial peptide cecropin P1. Appl Environ Microbiol 71(3):1130–1134. https://doi.org/10.1128/AEM.71.3.1130-1134.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ourth DD, Lockey TD, Renis HE (1994) Induction of Cecropin-like and attacin-like antibacterial but not antiviral activity in Heliothis virescens larvae. Biochem Biophys Res Commun 200(1):35–44. https://doi.org/10.1006/bbrc.1994.1410

    Article  CAS  PubMed  Google Scholar 

  34. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84(15):5449–5453. https://doi.org/10.1073/pnas.84.15.5449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Y, Afrasiabi R, Fathi F, Wang N, Xiang C, Love R, She Z, Kraatz H-B (2014) Impedance based detection of pathogenic E. coli O157:H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosens Bioelectron 58:193–199. https://doi.org/10.1016/j.bios.2014.02.045

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFD0501001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiayu Wan or Ye Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(DOCX 458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, H., Bu, S., Wang, C. et al. Sandwich immunoassay based on antimicrobial peptide-mediated nanocomposite pair for determination of Escherichia coli O157:H7 using personal glucose meter as readout. Microchim Acta 187, 220 (2020). https://doi.org/10.1007/s00604-020-4200-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4200-4

Keywords

Navigation