Skip to main content
Log in

A copper-based metal–organic framework decorated with electrodeposited Fe2O3 nanoparticles for electrochemical nitrite sensing

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An amperometric nitrite sensor is reported based on a screen-printed carbon electrode (SPCE) modified with copper(II)-benzene-1,4-dicarboxylate (Cu-BDC) frameworks and iron(III) oxide nanoparticles (Fe2O3 NPs). First, copper(I) oxide (Cu2O) nanocubes were synthesized, followed by a solvothermal reaction between Cu2O and H2BDC to form square plate-like Cu-BDC frameworks. Then, Fe2O3 NPs were electrodeposited on Cu-BDC frameworks using a potentiostatic method. The Fe2O3@Cu-BDC nanocomposite benefits from high conductivity and large active surface area, offering excellent electrocatalytic activity for nitrite oxidation. Under optimal amperometric conditions (0.55 V vs. Ag/AgCl), the sensor has a linear range of 1 to 2000 µM with a detection limit of 0.074 µM (S/N = 3) and sensitivity of 220.59 µA mM−1 cm−2. The sensor also provides good selectivity and reproducibility (RSD = 1.91%, n = 5). Furthermore, the sensor exhibits long-term stability, retaining 91.4% of its original current after 4 weeks of storage at room temperature. Finally, assessing nitrite in tap and mineral water samples revealed that the Fe2O3@Cu-BDC/SPCE has a promising prospect in amperometric nitrite detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He B, Yan D (2019) Au/ERGO nanoparticles supported on Cu-based metal-organic framework as a novel sensor for sensitive determination of nitrite. Food Control 103:70–77. https://doi.org/10.1016/j.foodcont.2019.04.001

    Article  CAS  Google Scholar 

  2. Li X, Ping J, Ying Y (2019) Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. TrAC - Trends Anal Chem 113:1–12. https://doi.org/10.1016/j.trac.2019.01.008

    Article  CAS  Google Scholar 

  3. Li G, Xia Y, Tian Y et al (2019) Review—recent developments on graphene-based electrochemical sensors toward nitrite. J Electrochem Soc 166:B881–B895. https://doi.org/10.1149/2.0171912jes

    Article  CAS  Google Scholar 

  4. Mao Y, Bao Y, Dx H, Zhao B (2018) Research progress on nitrite electrochemical sensor. Chinese J Anal Chem 46:147–155. https://doi.org/10.1016/S1872-2040(17)61066-1

    Article  CAS  Google Scholar 

  5. World Health Organization (2011) Guidelines for drinking-water quality, fourth edition. http://www.who.int. Accessed 7 Dec 2020

  6. EFSA (2017) Nitrites and nitrates added to food. In: Efsa Explain. Risk Assess. https://www.efsa.europa.eu/en/corporate/pub/nitritesandnitrates170614. Accessed 10 May 2022

  7. Abou-Melha KS (2020) Analytical chemistry optical chemosensor for spectrophotometric determination of nitrite in wastewater. ChemistrySelect 5:6216–6223. https://doi.org/10.1002/slct.202001366

    Article  CAS  Google Scholar 

  8. El hani O, Karrat A, Digua K, Amine A (2022) Development of a simplified spectrophotometric method for nitrite determination in water samples. Spectrochim Acta - Part A Mol Biomol Spectrosc 267:120574. https://doi.org/10.1016/j.saa.2021.120574

    Article  CAS  Google Scholar 

  9. Hatta M, Ruzicka J (Jarda), Measures CI (2020) The performance of a new linear light path flow cell is compared with a liquid core waveguide and the linear cell is used for spectrophotometric determination of nitrite in sea water at nanomolar concentrations. Talanta 219:121240. https://doi.org/10.1016/j.talanta.2020.121240

    Article  CAS  PubMed  Google Scholar 

  10. Huang KJ, Wang H, Guo YH et al (2006) Spectrofluorimetric determination of trace nitrite in food products with a new fluorescent probe 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3′,4′-diaminophenyl)-difluoroboradiaza-s-indacene. Talanta 69:73–78. https://doi.org/10.1016/j.talanta.2005.08.062

    Article  CAS  PubMed  Google Scholar 

  11. Gan L, Su Q, Chen Z, Yang X (2020) Exploration of pH-responsive carbon dots for detecting nitrite and ascorbic acid. Appl Surf Sci 530:147269. https://doi.org/10.1016/j.apsusc.2020.147269

    Article  CAS  Google Scholar 

  12. Zhang J, Yang J, Chen J et al (2022) A novel propylene glycol alginate gel based colorimetric tube for rapid detection of nitrite in pickled vegetables. Food Chem 373:131678. https://doi.org/10.1016/j.foodchem.2021.131678

    Article  CAS  PubMed  Google Scholar 

  13. Kodamatani H, Iwaya Y, Saga M et al (2017) Ultra-sensitive HPLC-photochemical reaction-luminol chemiluminescence method for the measurement of secondary amines after nitrosation. Anal Chim Acta 952:50–58. https://doi.org/10.1016/j.aca.2016.11.045

    Article  CAS  PubMed  Google Scholar 

  14. Arul P, Gowthaman NSK, John SA et al (2020) Ultrasonic assisted synthesis of size-controlled Cu-metal-organic framework decorated graphene oxide composite: sustainable electrocatalyst for the trace-level determination of nitrite in environmental water samples. ACS Omega 5:14242–14253. https://doi.org/10.1021/acsomega.9b03829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang YC, Chen YC, Chuang WS et al (2020) Pore-confined silver nanoparticles in a porphyrinic metal-organic framework for electrochemical nitrite detection. ACS Appl Nano Mater 3:9440–9448. https://doi.org/10.1021/acsanm.0c02052

    Article  CAS  Google Scholar 

  16. Lei H, Zhu H, Sun S et al (2021) Synergistic integration of Au nanoparticles, Co-MOF and MWCNT as biosensors for sensitive detection of low-concentration nitrite. Electrochim Acta 365:137375. https://doi.org/10.1016/j.electacta.2020.137375

    Article  CAS  Google Scholar 

  17. Liu L, Ma Q, Liu Z et al (2014) Detection of trace nitrite in waters using a QDs-based chemiluminescence analysis system. Anal Bioanal Chem 406:879–886. https://doi.org/10.1007/s00216-013-7490-0

    Article  CAS  PubMed  Google Scholar 

  18. Tajik S, Orooji Y, Karimi F et al (2021) High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth. J Food Meas Charact 15:4617–4622. https://doi.org/10.1007/s11694-021-01027-0

    Article  Google Scholar 

  19. Beitollahi H, Shahsavari M, Sheikhshoaie I et al (2022) Amplified electrochemical sensor employing screen-printed electrode modified with Ni-ZIF-67 nanocomposite for high sensitive analysis of Sudan I in present bisphenol A. Food Chem Toxicol 161:112824. https://doi.org/10.1016/j.fct.2022.112824

    Article  CAS  PubMed  Google Scholar 

  20. Yang Z, Zhong Y, Zhou X et al (2022) Metal-organic framework-based sensors for nitrite detection: a short review. J Food Meas Charact. https://doi.org/10.1007/s11694-021-01270-5

    Article  Google Scholar 

  21. Duan J, Li Y, Pan Y et al (2019) Metal-organic framework nanosheets: an emerging family of multifunctional 2D materials. Coord Chem Rev 395:25–45. https://doi.org/10.1016/j.ccr.2019.05.018

    Article  CAS  Google Scholar 

  22. Chuang CH, Kung CW (2020) Metal–organic frameworks toward electrochemical sensors: challenges and opportunities. Electroanalysis 32:1885–1895. https://doi.org/10.1002/elan.202060111

    Article  CAS  Google Scholar 

  23. Song Y, Yang Y, Mo S et al (2022) Fast construction of (Fe2O3)x@Ni-MOF heterostructure nanosheets as highly active catalyst for water oxidation. J Alloys Compd 892:162149. https://doi.org/10.1016/j.jallcom.2021.162149

    Article  CAS  Google Scholar 

  24. Sun X, Gao G, Yan D, Feng C (2017) Synthesis and electrochemical properties of Fe3O4@MOF core-shell microspheres as an anode for lithium ion battery application. Appl Surf Sci 405:52–59. https://doi.org/10.1016/j.apsusc.2017.01.247

    Article  CAS  Google Scholar 

  25. Radhakrishnan S, Krishnamoorthy K, Sekar C et al (2014) A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl Catal B Environ 148–149:22–28. https://doi.org/10.1016/j.apcatb.2013.10.044

    Article  CAS  Google Scholar 

  26. Wang S, Liu M, He S et al (2018) Protonated carbon nitride induced hierarchically ordered Fe2O3/H–C3N4/rGO architecture with enhanced electrochemical sensing of nitrite. Sens Actuators B Chem 260:490–498. https://doi.org/10.1016/j.snb.2018.01.073

    Article  CAS  Google Scholar 

  27. Zhao Z, Xia Z, Liu C et al (2017) Green synthesis of Pd/Fe3O4 composite based on polyDOPA functionalized reduced graphene oxide for electrochemical detection of nitrite in cured food. Electrochim Acta 256:146–154. https://doi.org/10.1016/j.electacta.2017.09.185

    Article  CAS  Google Scholar 

  28. Zhan G, Fan L, Zhao F et al (2019) Fabrication of ultrathin 2D Cu-BDC nanosheets and the derived integrated MOF nanocomposites. Adv Funct Mater 29:1–13. https://doi.org/10.1002/adfm.201806720

    Article  CAS  Google Scholar 

  29. Amali RKA, Lim HN, Ibrahim I et al (2022) Silver nanoparticles-loaded copper (II)-terephthalate framework nanocomposite as a screen-printed carbon electrode modifier for amperometric nitrate detection. J Electroanal Chem 918:116440. https://doi.org/10.1016/j.jelechem.2022.116440

    Article  CAS  Google Scholar 

  30. Li X, Zhou H, Qi F et al (2018) Three hidden talents in one framework: a terephthalic acid-coordinated cupric metal-organic framework with cascade cysteine oxidase- and peroxidase-mimicking activities and stimulus-responsive fluorescence for cysteine sensing. J Mater Chem B 6:6207–6211. https://doi.org/10.1039/C8TB02167H

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Cao W, Wang L et al (2018) Electrochemical determination of 2,4,6-trinitrophenol using a hybrid film composed of a copper-based metal organic framework and electroreduced graphene oxide. Microchim Acta 185:1–9. https://doi.org/10.1007/s00604-018-2857-8

    Article  CAS  Google Scholar 

  32. Arul P, Huang ST, Mani V, Hu YC (2021) Ultrasonic synthesis of bismuth-organic framework intercalated carbon nanofibers: a dual electrocatalyst for trace-level monitoring of nitro hazards. Electrochim Acta 381:138280. https://doi.org/10.1016/j.electacta.2021.138280

    Article  CAS  Google Scholar 

  33. Domenech A, Garcia H, Domenech-Carbo MT, Llabres-i-Xamena F (2007) Electrochemistry of metal-organic frameworks: a description from the voltammetry of microparticles approach. J Phys Chem C 111:13701–13711. https://doi.org/10.1021/jp073458x

  34. Kornii A, Lisnyak VV, Grishchenko L, Tananaiko O (2022) Synthesis and characterization of hybrid silica/Fe2O3-carbon nanoparticles films electrodeposited onto planar electrodes. Electrochim Acta 409:139938. https://doi.org/10.1016/j.electacta.2022.139938

    Article  CAS  Google Scholar 

  35. Suma BP, Pandurangappa M (2020) Graphene oxide/copper terephthalate composite as a sensing platform for nitrite quantification and its application to environmental samples. J Solid State Electrochem 24:69–79. https://doi.org/10.1007/s10008-019-04454-8

    Article  CAS  Google Scholar 

  36. Cassani MC, Castagnoli R, Gambassi F et al (2021) A Cu(II)-MOF based on a propargyl carbamate-functionalized isophthalate ligand as nitrite electrochemical sensor. Sensors 21. https://doi.org/10.3390/s21144922

  37. Chen H, Yang T, Liu F, Li W (2019) Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sens Actuators B Chem 286:401–407. https://doi.org/10.1016/j.snb.2018.10.036

    Article  CAS  Google Scholar 

  38. Yuan B, Zhang J, Zhang R et al (2016) Cu-based metal-organic framework as a novel sensing platform for the enhanced electro-oxidation of nitrite. Sens Actuators B Chem 222:632–637. https://doi.org/10.1016/j.snb.2015.08.100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Fundamental Research Grant Scheme (FRGS) FRGS/1/2021/STG05/UPM/01/1 awarded by the Ministry of Higher Education of Malaysia (MOHE). R. K. A. Amali thanks the Sri Lanka Council for Agricultural Research Policy (SLCARP) for a Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Contributions

R.K.A.A.: formal analysis, methodology, investigation, data curation, writing — original draft, writing — review and editing. H.N.L.: conceptualization, supervision, writing — review and editing. I.I.: visualization, writing — review and editing. Z.Z.: supervision. S.A.A.A.: supervision.

Corresponding author

Correspondence to H. N. Lim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1130 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amali, R.K.A., Lim, H.N., Ibrahim, I. et al. A copper-based metal–organic framework decorated with electrodeposited Fe2O3 nanoparticles for electrochemical nitrite sensing. Microchim Acta 189, 356 (2022). https://doi.org/10.1007/s00604-022-05450-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05450-y

Keywords

Navigation