Skip to main content
Log in

Nanostructured Cuprous-Oxide-Based Screen-Printed Electrode for Electrochemical Sensing of Picric Acid

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The sensitive and selective electrochemical detection of picric acid (PA), a toxic, harmful environmental pollutant and an explosive, using different morphologies of cuprous oxide (Cu2O) is reported. The different Cu2O morphologies, synthesized by a hydrothermal method for 8 h, 10 h, and 12 h, were characterized using various techniques to confirm their morphological, optical, compositional, and structural properties. Sensors, fabricated in the form of screen-printed electrodes using these different morphologies of Cu2O, were used to study the electrochemical sensing capabilities of the nanomaterials for PA (7.8 μ M to 10.0 mM). Cyclic voltammetry studies revealed a distinct change in the redox peak current as a function of PA concentration, which was further confirmed by electrochemical impedance spectroscopy studies, as the charge-transfer resistance increased with an increase in PA concentration. Scan rate studies showed that the electrochemical sensing of PA is a surface-controlled process, involving rapid electron transfer. Among the different morphologies, Cu2O synthesized for 8 h showed a reproducible and reliable sensitivity of 130.4 μA mM−1 cm−2 with a limit of detection of 39 μM and good linearity over a wide range of PA concentrations. Interference studies with other phenolic compounds revealed the presence of distinct peaks corresponding to PA, indicating that the fabricated sensor shows specificity and selectivity for PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Hartter, Chemical Industry Institute of Toxicology Series (New York: Hemisphere Publishing, 1985), pp. 1–13.

    Google Scholar 

  2. K. Singh, G.R. Chaudhary, S. Singh, and S.K. Mehta, J. Lumin. 154, 148 (2014).

    Article  CAS  Google Scholar 

  3. D. Farmanzadeh and L. Tabari, Appl. Surf. Sci. 324, 864 (2015).

    Article  CAS  Google Scholar 

  4. M. Nipper, R.S. Carr, J.M. Biedenbach, R.L. Hooten, and K. Miller, Mar. Pollut. Bull. 50, 1205 (2005).

    Article  CAS  Google Scholar 

  5. U.S. Environmental Protection Agency, Nitrophenols, Ambient Water Qualify Criteria (U.S. Environmental Protection Agency, Washington, DC, 1980), EPA 440/5-80-063.

  6. K. Singh and S.K. Mehta, Sens. Lett. 13, 1002 (2015).

    Article  Google Scholar 

  7. S. Ameen, M.S. Akhtar, and H.S. Shin, Talanta 100, 377 (2012).

    Article  CAS  Google Scholar 

  8. S.A. Ansari, Z. Khatoon, N. Parveen, H. Fouad, A. Kulkarni, A. Umar, Z.A. Ansari, and S.G. Ansari, Sci. Adv. Mater. 9, 2032 (2017).

    Article  CAS  Google Scholar 

  9. S.S. Sawant, A.D. Bhagwat, and C.M. Mahajan, J. Nano- Electron. Phys. 8, 01035-1 (2016).

    Article  Google Scholar 

  10. A. Li, P. Li, J. Hu, and W. Zhang, J. Mater. Sci.: Mater. Electron. 26, 5071 (2015).

    CAS  Google Scholar 

  11. S. Wu, T. Liu, W. Zeng, J. He, W. Yu, and Z. Gou, J. Mater. Sci.: Mater. Electron. 24, 2404 (2013).

    CAS  Google Scholar 

  12. C. Zhu, G. Yang, H. Li, D. Du, and Y. Lin, Anal. Chem. 87, 230 (2015).

    Article  CAS  Google Scholar 

  13. W. Jing and Q. Yang, Anal. Bioanal. Chem. 385, 1330 (2006).

    Article  Google Scholar 

  14. M.J. Schoning and A. Poghossian, Analyst 127, 1137 (2002).

    Article  Google Scholar 

  15. N. Jaiswal and I. Tiwari, Anal. Methods 9, 3895 (2017).

    Article  CAS  Google Scholar 

  16. F. Patolsky, G.F. Zheng, and C.M. Lieber, Anal. Chem. 78, 4260 (2006).

    Article  CAS  Google Scholar 

  17. P. Nair and M. Alam, Phys. Rev. Lett. 99, 256101 (2007).

    Article  Google Scholar 

  18. D.W. Kimmel, G. LeBlanc, M.E. Meschievitz, and D.E. Cliffel, Anal. Chem. 84, 685 (2012).

    Article  CAS  Google Scholar 

  19. A. Gentile, F. Ruffino, and M.G. Grimaldi, Nanomaterials 6, 110 (2016).

    Article  Google Scholar 

  20. T.H. Tran and V.T. Nguyen, Int. Sch. Res. Not. 2014, 856592 (2014).

    Google Scholar 

  21. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S.D. Tilley, and M. Grätzel, Energy Environ. Sci. 5, 8673 (2012).

    Article  CAS  Google Scholar 

  22. C.G. Morales-Guio, S.D. Tilley, H. Vrubel, M. Grätzel, and X. Hu, Nat. Commun. 5, 3059 (2014).

    Article  Google Scholar 

  23. M. Schreier, J. Luo, P. Gao, T. Moehl, M.T. Mayer, and M. Grätzel, J. Am. Chem. Soc. 138, 1938 (2016).

    Article  CAS  Google Scholar 

  24. L. Zhang, D. Jing, L. Guo, and X. Yao, ACS Sustain. Chem. Eng. 2, 1446 (2014).

    Article  CAS  Google Scholar 

  25. J. Tian, H. Li, Z. Xing, L. Wang, Y. Luo, A.M. Asiri, A.O. Al-Youbi, and X. Sun, Catal. Sci. Technol. 2, 2227 (2012).

    Article  CAS  Google Scholar 

  26. A.C. Fernandez and J. Jesudurai, Elixir Nanocompos. Mater. 50, 10541 (2012).

    Google Scholar 

  27. J. Huang, L. Wang, C. Shia, Y. Dai, C. Gu, and J. Liu, Sens. Actuators, B 196, 567 (2014).

    Article  CAS  Google Scholar 

  28. A. Chowdhury and P.S. Mukherjee, J. Org. Chem. 80, 4064 (2015).

    Article  CAS  Google Scholar 

  29. A. Hakonen, F.C. Wang, P.O. Andersson, H. Wingfors, T. Rindzevicius, M.S. Schmidt, V.R. Soma, S. Xu, Y.Q. Li, A. Boisen, and H.A. Wu, ACS Sens. 2, 198 (2017).

    Article  CAS  Google Scholar 

  30. G. Sivaraman, B. Vidya, and D. Chellappa, RSC Adv. 4, 30828 (2014).

    Article  CAS  Google Scholar 

  31. S. Kumari, S. Joshi, T.C. Cordova-Sintjago, D.D. Pant, and R. Sakhuja, Sens. Actuators, B 229, 599 (2016).

    Article  CAS  Google Scholar 

  32. K. Ahmad, A. Mohammad, P. Mathur, and S.M. Mobin, Electrochim. Acta 215, 435 (2016).

    Article  CAS  Google Scholar 

  33. K. Giribabu, S.Y. Oh, R. Suresh, S.P. Kumar, R. Manigandan, S. Munusamy, G. Gnanamoorthy, J.Y. Kim, Y.S. Huh, and V. Narayanan, Microchim. Acta 183, 2421 (2016).

    Article  CAS  Google Scholar 

  34. S. Nagendran, P. Vishnoi, and R. Murugavel, J. Fluoresc. 27, 1299 (2017).

    Article  CAS  Google Scholar 

  35. M. Mahyari, Int. J. Environ. Anal. Chem. 96, 1455 (2016).

    Article  CAS  Google Scholar 

  36. S. Raj, Shankaran, and D. Ravi, Sens. Lett. 14, 813 (2016).

    Article  Google Scholar 

  37. C.L. Yuan, C.P. Chang, Y.S. Hong, and Y. Sung, Mater. Sci.-Pol. 27, 509 (2009).

    CAS  Google Scholar 

  38. M.H. Wong, J.P. Giraldo, S.Y. Kwak, V.B. Koman, R. Sinclair, T.T.S. Lew, G. Bisker, P. Liu, and M.S. Strano, Nat. Mater. 16, 264 (2017).

    Article  CAS  Google Scholar 

  39. A.A. Ibrahim, R. Kumar, A. Umar, S.H. Kim, A. Bumajdad, Z.A. Ansari, and S. Baskoutas, Electrochim. Acta 222, 463 (2016).

    Article  CAS  Google Scholar 

  40. A. Heller and B. Feldman, Chem. Rev. 108, 2482 (2008).

    Article  CAS  Google Scholar 

  41. A. Chen and C. Ostrom, Chem. Rev. 115, 11999 (2015).

    Article  CAS  Google Scholar 

  42. R.R. Moore, C.E. Banks, and R.G. Compton, Anal. Chem. 76, 2677 (2004).

    Article  CAS  Google Scholar 

  43. Z.N. Kayani, M. Umer, S. Riaz, and S. Naseem, J. Electron. Mater. 44, 3703 (2015).

    Article  Google Scholar 

  44. M.A. Khan, M. Ullah, T. Iqbal, H. Mahmood, A.A. Khan, M. Shafique, A. Majid, A. Ahmed, and N.A. Khan, Nanosci. Nanotechnol. Res. 3, 16 (2015).

    CAS  Google Scholar 

  45. F. Haque, M.S. Rahman, E. Ahmed, P.K. Bakshi, and A.A. Shaikh, Dhaka Univ. J. Sci. 61, 161 (2013).

    CAS  Google Scholar 

  46. C. Batchelor-McAuley, E. Katelhon, E.O. Barnes, R.G. Compton, E. Laborda, and A. Molina, ChemistryOpen 4, 224 (2015).

    Article  CAS  Google Scholar 

  47. K.J. Lee, N. Elgrishi, B. Kandemir, and J.L. Dempsey, Nat. Rev. Chem. 1, 0039 (2017).

    Article  CAS  Google Scholar 

  48. D.M. Pimentel, F.M. de Oliveira, W.T.P. dos Santos, L.T. Kubota, F.S. Damos, and R.C.S. Luz, J. Braz. Chem. Soc. 26, 2035 (2015).

    CAS  Google Scholar 

  49. R. Hajian, Z. Tayebi, and N. Shams, J. Pharm. Anal. 7, 27 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Deanship of Scientific Research, Research Center, College of Engineering, King Saud University for its financial support and the Researcher Support and Service Unit for its technical support. The authors acknowledge the measurement support received from the Central Instrumentation Facility of Jamia Millia Islamia and the DST-PURSE program.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, S., Chishti, B., Ansari, S.A. et al. Nanostructured Cuprous-Oxide-Based Screen-Printed Electrode for Electrochemical Sensing of Picric Acid. J. Electron. Mater. 47, 7505–7513 (2018). https://doi.org/10.1007/s11664-018-6692-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6692-9

Keywords

Navigation