Skip to main content
Log in

Covalent organic framework modified carbon cloth for ratiometric electrochemical sensing of bisphenol A and S

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel ratiometric electrochemical sensor was developed based on a carbon cloth electrodeposited with silver nanoparticles and drop-coated by covalent organic framework (COF-LZU1) for simultaneous determination of bisphenol A (BPA) and bisphenol S (BPS). Carbon cloth exhibited a significantly larger electrochemical active area than common glassy carbon electrodes (27.5 times). Silver nanoparticles not only provided a stable reference signal but also enhanced electroactivity for the oxidation of BPA and BPS. COF-LZU1 with good adsorption performance and large periodic π-arrays promoted the enrichment of BPA and BPS to further increase the current response. Compared with the traditional single-signal electrochemical sensor, the developed ratiometric sensor exhibited better reproducibility and a wider linear range for BPA and BPS from 0.5 to 100 μM with a limit of detection of 0.15 μM. Furthermore, the developed sensor showed excellent stability and superior anti-interference ability. The real sample analysis for BPA and BPS has been successfully carried out in mineral water, electrolyte drink, tea, juice, and beer with recoveries of 88.3–111.7%. The developed ratiometric sensor is expected to be a candidate for the preparation of other electrochemical sensors and the analysis of additional practical samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Russo G, Barbato F, Cardone E, Fattore M, Albrizio S, Grumetto L (2018) Bisphenol A and bisphenol S release in milk under household conditions from baby bottles marketed in Italy. J Environ Sci Health Part B-Pesticides Food Contam Agric Wastes 2:116–120. https://doi.org/10.1080/03601234.2017.1388662

    Article  CAS  Google Scholar 

  2. Gallo P, Di Marco PI, Esposito F, Fasano E, Scognamiglio G, Mita GD, Cirillo T (2017) Determination of BPA, BPB, BPF, BADGE and BFDGE in canned energy drinks by molecularly imprinted polymer cleaning up and UPLC with fluorescence detection. Food Chem 220:406–412. https://doi.org/10.1016/j.foodchem.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  3. Chao Z, Peisi X, Ting Y, Hailin W, Kong CAC, Zongwei C (2018) MALDI-MS imaging reveals asymmetric spatial distribution of lipid metabolites from bisphenol S-induced nephrotoxicity. Anal Chem 5:3196–3204. https://doi.org/10.1021/acs.analchem.7b04540

    Article  CAS  Google Scholar 

  4. Nevoral J, Kolinko Y, Moravec J, Zalmanova T, Hoskova K, Prokesova S, Klein P, Ghaibour K, Hosek P, Stiavnicka M, Rimnacova H, Tonar Z, Petr J, Kralickova M (2018) Long-term exposure to very low doses of bisphenol S affects female reproduction. Reprod 1:47–57. https://doi.org/10.1530/rep-18-0092

    Article  CAS  Google Scholar 

  5. Xiong L, Yan P, Chu M, Gao Y-Q, Li W-H, Yang X-L (2018) A rapid and simple HPLC-FLD screening method with QuEChERS as the sample treatment for the simultaneous monitoring of nine bisphenols in milk. Food Chem 244:371–377. https://doi.org/10.1016/j.foodchem.2017.10.030

    Article  CAS  PubMed  Google Scholar 

  6. Regueiro J, Wenzl T (2015) Determination of bisphenols in beverages by mixed-mode solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1422:230–238. https://doi.org/10.1016/j.chroma.2015.10.046

    Article  CAS  PubMed  Google Scholar 

  7. Wang Q, Zhu L, Chen M, Ma X, Wang X, Xia J (2017) Simultaneously determination of bisphenol A and its alternatives in sediment by ultrasound-assisted and solid phase extractions followed by derivatization using GC-MS. Chemosphere 169:709–715. https://doi.org/10.1016/j.chemosphere.2016.11.095

    Article  CAS  PubMed  Google Scholar 

  8. Zeng L, Zhang X, Wang X, Cheng D, Li R, Han B, Wu M, Zhuang Z, Ren A, Zhou Y, Jing T (2021) Simultaneous fluorescence determination of bisphenol A and its halogenated analogs based on a molecularly imprinted paper-based analytical device and a segment detection strategy. Biosens Bioelectron 180:113106. https://doi.org/10.1016/j.bios.2021.113106

    Article  CAS  PubMed  Google Scholar 

  9. Zhang R, Zhang Y, Deng X, Sun S, Li Y (2018) A novel dual-signal electrochemical sensor for bisphenol A determination by coupling nanoporous gold leaf and self-assembled cyclodextrin. Electrochim Acta 271:417–424. https://doi.org/10.1016/j.electacta.2018.03.113

    Article  CAS  Google Scholar 

  10. Rao H, Zhao X, Liu X, Zhong J, Zhang Z, Zou P, Jiang Y, Wang X, Wang Y (2018) A novel molecularly imprinted electrochemical sensor based on graphene quantum dots coated on hollow nickel nanospheres with high sensitivity and selectivity for the rapid determination of bisphenol S. Biosens Bioelectron 100:341–347. https://doi.org/10.1016/j.bios.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  11. Freitas JM, Ramos DLO, Sousa RMF, Paixao TRLC, Santana MHP, Munoz RAA, Richter EM (2017) A portable electrochemical method for cocaine quantification and rapid screening of common adulterants in seized samples. Sensors Actuators B-Chem 243:557–565. https://doi.org/10.1016/j.snb.2016.12.024

    Article  CAS  Google Scholar 

  12. Li Z, Hu J, Lou Z, Zeng L, Zhu M (2021) Molecularly imprinted photoelectrochemical sensor for detecting tetrabromobisphenol A in indoor dust and water. Microchim Acta 10:1–11

    Google Scholar 

  13. Ye Z, Wang Q, Qiao J, Ye B, Li G (2019) Simultaneous detection of bisphenol A and bisphenol S with high sensitivity based on a new electrochemical sensor. J Electroanal Chem 854:113541. https://doi.org/10.1016/j.jelechem.2019.113541

    Article  CAS  Google Scholar 

  14. Riman D, Prodromidis MI, Jirovsky D, Hrbac J (2019) Low-cost pencil graphite-based electrochemical detector for HPLC with near-coulometric efficiency. Sensors Actuators B-Chemical 296:126618. https://doi.org/10.1016/j.snb.2019.05.095

    Article  CAS  Google Scholar 

  15. Gao X, DelaCruz S, Zhu C, Cheng S, Gardner D, Xie Y, Carraro C, Maboudian R (2019) Surface functionalization of carbon cloth with cobalt-porphyrin-based metal organic framework for enhanced electrochemical sensing. Carbon 148:64–71. https://doi.org/10.1016/j.carbon.2019.03.040

    Article  CAS  Google Scholar 

  16. Khorablou Z, Shahdost-Fard F, Razmi H (2021) Flexible and highly sensitive methadone sensor based on gold nanoparticles/polythiophene modified carbon cloth platform. Sensors Actuators B-Chemical 344:130284. https://doi.org/10.1016/j.snb.2021.130284

    Article  CAS  Google Scholar 

  17. Li Z, Hu J, Xiao Y, Zha Q, Zeng L, Zhu M (2021) Surfactant assisted Cr-metal organic framework for the detection of bisphenol A in dust from E-waste recycling area. Anal Chim Acta 1146:174–183. https://doi.org/10.1016/j.aca.2020.11.021

    Article  CAS  PubMed  Google Scholar 

  18. Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 5751:1166–1170. https://doi.org/10.1126/science.1120411

    Article  CAS  Google Scholar 

  19. Chen Y, Chen Z (2017) COF-1-modified magnetic nanoparticles for highly selective and efficient solid-phase microextraction of paclitaxel. Talanta 165:188–193. https://doi.org/10.1016/j.talanta.2016.12.051

    Article  CAS  PubMed  Google Scholar 

  20. Sun X, Wang N, Xie Y, Chu H, Wang Y, Wang Y (2021) In-situ anchoring bimetallic nanoparticles on covalent organic framework as an ultrasensitive electrochemical sensor for levodopa detection. Talanta 225:122072. https://doi.org/10.1016/j.talanta.2020.122072

    Article  CAS  PubMed  Google Scholar 

  21. Pang Y-H, Huang Y-Y, Wang L, Shen X-F, Wang Y-Y (2020) Determination of bisphenol A and bisphenol S by a covalent organic framework electrochemical sensor. Environ Pollut 263:114616. https://doi.org/10.1016/j.envpol.2020.114616

    Article  CAS  Google Scholar 

  22. Huang Y-Y, Pang Y-H, Shen X-F, Jiang R, Wang Y-Y (2022) Covalent organic framework DQTP modified pencil graphite electrode for simultaneous determination of bisphenol A and bisphenol S. Talanta 236:122859. https://doi.org/10.1016/j.talanta.2021.122859

    Article  CAS  PubMed  Google Scholar 

  23. Yang J, Hu Y, Li Y (2019) Molecularly imprinted polymer-decorated signal on-off ratiometric electrochemical sensor for selective and robust dopamine detection. Biosens Bioelectron 135:224–230. https://doi.org/10.1016/j.bios.2019.03.054

    Article  CAS  PubMed  Google Scholar 

  24. Yu J, Jin H, Gui R, Wang Z, Ge F (2017) A general strategy to facilely design ratiometric electrochemical sensors in electrolyte solution by directly using a bare electrode for dual-signal sensing of analytes. Talanta 162:435–439. https://doi.org/10.1016/j.talanta.2016.10.084

    Article  CAS  PubMed  Google Scholar 

  25. Yujiao S, Xiaowen J, Hui J, Rijun G (2019) Ketjen black/ferrocene dual-doped MOFs and aptamer-coupling gold nanoparticles used as a novel ratiometric electrochemical aptasensor for vanillin detection. Anal Chim Acta 1083:101–109. https://doi.org/10.1016/j.aca.2019.07.027

    Article  CAS  Google Scholar 

  26. Cunningham JC, Brenes NJ, Crooks RM (2014) Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching. Anal Chem 12:6166–6170. https://doi.org/10.1021/ac501438y

    Article  CAS  Google Scholar 

  27. Wang X, Liu G, Qi Y, Yuan Y, Gao J, Luo X, Yang T (2019) Embedded Au nanoparticles-based ratiometric electrochemical sensing strategy for sensitive and reliable detection of copper ions. Anal Chem 18:12006–12013. https://doi.org/10.1021/acs.analchem.9b02945

    Article  CAS  Google Scholar 

  28. Zhong W, Gao F, Zou J, Liu S, Li M, Gao Y, Yu Y, Wang X, Lu L (2021) MXene@Ag-based ratiometric electrochemical sensing strategy for effective detection of carbendazim in vegetable samples. Food Chem 360:130006. https://doi.org/10.1016/j.foodchem.2021.130006

    Article  CAS  PubMed  Google Scholar 

  29. Niu X, Ding S, Wang W, Xu Y, Xu Y, Chen H, Chen X (2016) Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography. J Chromatogr A 1436:109–117. https://doi.org/10.1016/j.chroma.2016.01.066

    Article  CAS  PubMed  Google Scholar 

  30. Ghazizadeh AJ, Afkhami A, Bagheri H (2018) Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO2 nanostructure. Microchim Acta 185:296. https://doi.org/10.1007/s00604-018-2840-4

    Article  CAS  Google Scholar 

  31. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem Interfacial Electrochem 3:355–393. https://doi.org/10.1016/S0022-0728(74)80448-1

    Article  Google Scholar 

  32. Spring SA, Goggins S, Frost CG (2021) Ratiometric electrochemistry: improving the robustness, reproducibility and reliability of biosensors. Molecules 8:2130. https://doi.org/10.3390/molecules26082130

    Article  CAS  Google Scholar 

  33. Zheng Z, Liu J, Wang M, Cao J, Li L, Wang C, Feng N (2016) Selective sensing of bisphenol A and bisphenol S on platinum/poly(diallyl dimethyl ammonium chloride)-diamond powder hybrid modified glassy carbon electrode. J Electrochem Soc 163:B192–B199. https://doi.org/10.1149/2.0281606jes

    Article  CAS  Google Scholar 

  34. Wang X, Li M, Wu M, Shi Y, Yang J, Shan J, Liu L (2018) Simultaneous determination of bisphenol A and bisphenol S using multi-walled carbon nanotubes modified electrode. Int J Electrochem Sci 12:11906–11922. https://doi.org/10.20964/2018.12.80

    Article  CAS  Google Scholar 

  35. Jemmeli D, Marcoccio E, Moscone D, Dridi C, Arduini F (2020) Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A. Talanta 216:120924. https://doi.org/10.1016/j.talanta.2020.120924

    Article  CAS  PubMed  Google Scholar 

  36. Zhang S, Shi Y, Wang J, Xiao L, Ya X, Cui R, Han Z (2020) Nanocomposites consisting of nanoporous platinum-silicon and graphene for electrochemical determination of bisphenol A. Microchimica Acta 187:241. https://doi.org/10.1007/s00604-020-4219-6

    Article  CAS  PubMed  Google Scholar 

  37. Fadillah G, Triana S, Chasanah U, Saleh TA (2020) Titania-nanorods modified carbon paste electrode for the sensitive voltammetric determination of BPA in exposed bottled water. Sensing and Bio-Sensing Research 30:100391. https://doi.org/10.1016/j.sbsr.2020.100391

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21976070, 22076067) and the Fundamental Research Funds for the Central Universities (JUSRP22003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Hong Pang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 973 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, YH., Wang, YY., Shen, XF. et al. Covalent organic framework modified carbon cloth for ratiometric electrochemical sensing of bisphenol A and S. Microchim Acta 189, 189 (2022). https://doi.org/10.1007/s00604-022-05297-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05297-3

Keywords

Navigation