Skip to main content
Log in

Nanocomposites consisting of nanoporous platinum-silicon and graphene for electrochemical determination of bisphenol A

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Three-dimensional nanoporous PtSi (NP-PtSi) alloy was prepared by dealloying ternary PtSiAl alloy ribbons. By combining the nanoporous morphology of PtSi and graphene (GR), a new composite material was developed, which was used to modify the surface of a glassy carbon electrode (GCE). The resulting modified electrodes showed an excellent electrocatalytic activity towards the electro oxidation of bisphenol A. Based on differential pulse voltammetry measurements, NP-PtSi/GR/GCE showed linear response over the concentration range 0.30 to 85 μM bisphenol A, while the detection limit was found to be 0.11 μM (S/N = 3). NP-PtSi/GR/GCE showed also satisfactory stability and selectivity over various compounds present in real samples, and they were successfully applied to the determination of bisphenol A in inoculated milk samples.

Nanoporous PtSi (NP-PtSi) was fabricated by dealloying PtSiAl alloy ribbons. Based on the NP-PtSi alloy and graphene (GR) composites that modified glassy carbon electrode (GCE), a sensitive and stable electrochemical sensor was developed for the determination of bisphenol A by differential pulse voltammetric (DPV) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Su BY, Shao HL, Li N, Chen XM, Cai ZX, Chen X (2017) A sensitive bisphenol A voltammetric sensor relying on AuPd nanoparticles/graphene composites modified glassy carbon electrode. Talanta 166:126–132

    Article  CAS  Google Scholar 

  2. Ashraf G, Asif M, Aziz A, Wang ZY, Qiu XY, Huang Q, Xiao F, Liu HF (2019) Nanocomposites consisting of copper and copper oxide incorporated into MoS4 nanostructures for sensitive voltammetric determination of bisphenol A. Microchim Acta 186:337

    Article  Google Scholar 

  3. Li YT, Yang C, Ning JY, Yang YL (2014) Cloud point extraction for the determination of bisphenol A, bisphenol AF and tetrabromobisphenol A in river water samples by high-performance liquid chromatography. Anal Methods 6:3285–3290

    Article  CAS  Google Scholar 

  4. Ragavan KV, Rastogi NK (2016) Graphene–copper oxide nanocomposite with intrinsic peroxidase activity for enhancement of chemiluminescence signals and its application for detection of Bisphenol-A. Sensors Actuators B Chem 229:570–580

    Article  CAS  Google Scholar 

  5. Sambe H, Hoshina K, Hosoya K, Haginaka J (2005) Direct injection analysis of bisphenol A in serum by combination of isotope imprinting with liquid chromatography-mass spectrometry. Analyst 130:38–40

    Article  CAS  Google Scholar 

  6. Zhang XF, Zhu D, Huang CP, Sun YH, Lee Y-I (2015) Sensitive detection of bisphenol A in complex samples by in-column molecularly imprinted solid-phase extraction coupled with capillary electrophoresis. Microchem J 121:1–5

    Article  CAS  Google Scholar 

  7. Chang C-M, Chou C-C, Lee M-R (2005) Determining leaching of bisphenol A from plastic containers by solid-phase microextraction and gas chromatography–mass spectrometry. Anal Chim Acta 539:41–47

    Article  CAS  Google Scholar 

  8. Üzek R, Sari E, Şenel S, Denizli A, Merkoçi A (2019) A nitrocellulose paper strip for fluorometric determination of bisphenol A using molecularly imprinted nanoparticles. Microchim Acta 186:218

    Article  Google Scholar 

  9. Zhang J, Zhao S-Q, Zhang K, Zhou J-Q (2014) Cd-doped ZnO quantum dots-based immunoassay for the quantitative determination of bisphenol A. Chemosphere 95:105–110

    Article  CAS  Google Scholar 

  10. Vieira Jodar L, Orzari LO, Storti Ortolani T, Assumpção MHMT, Vicentini FC, Janegitz BC (2019) Electrochemical sensor based on casein and carbon black for Bisphenol A detection. Electroanal 31:2162–2170

    Article  CAS  Google Scholar 

  11. Baghayeri M, Ansari R, Nodehi M, Razavipanah I, Veisi H (2018) Voltammetric aptasensor for bisphenol a based on the use of a MWCNT/Fe3O4@gold nanocomposite. Microchim Acta 185:320

    Article  Google Scholar 

  12. Ensafi AA, Amini M, Rezaei B (2018) Molecularly imprinted electrochemical aptasensor for the attomolar detection of bisphenol A. Microchim Acta 185:265

    Article  Google Scholar 

  13. Qin JY, Shen J, Xu XY, Yuan Y, He GY, Chen HQ (2018) A glassy carbon electrode modified with nitrogen-doped reduced graphene oxide and melamine for ultra-sensitive voltammetric determination of bisphenol A. Microchim Acta 185:459

    Article  Google Scholar 

  14. Dadkhah S, Ziaei E, Mehdinia A, Baradaran Kayyal T, Jabbari A (2016) A glassy carbon electrode modified with amino-functionalized graphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol A. Microchim Acta 183:1933–1941

    Article  CAS  Google Scholar 

  15. Chang G, Shu HH, Huang QW, Oyama M, Ji K, Liu X, He YB (2015) Synthesis of highly dispersed Pt nanoclusters anchored graphene composites and their application for non-enzymatic glucose sensing. Electrochim Acta 157:149–157

    Article  CAS  Google Scholar 

  16. Bo XJ, Ndamanisha JC, Bai J, Guo LP (2010) Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta 82:85–91

    Article  CAS  Google Scholar 

  17. Zhao DY, Yu GL, Tian KL, Xu CX (2016) A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens Bioelectron 82:119–126

    Article  CAS  Google Scholar 

  18. Chen DD, Tian CH, Li XY, Li ZH, Han ZD, Zhai C, Quan Y, Cui RJ, Zhang GH (2018) Electrochemical determination of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous platinum-yttrium and graphene. Microchim Acta 185:98

    Article  Google Scholar 

  19. Yang HY, Hou JG, Wang ZH, Zhang TT, Xu CX (2018) An ultrasensitive biosensor for superoxide anion based on hollow porous PtAg nanospheres. Biosens Bioelectron 117:429–435

    Article  CAS  Google Scholar 

  20. Asif M, Liu HW, Aziz A, Wang HT, Wang ZY, Ajmal M, Xiao F, Liu HF (2017) Core-shell iron oxide-layered double hydroxide: high electrochemical sensing performance of H 2 O 2 biomarker in live cancer cells with plasma therapeutics. Biosens Bioelectron 97:352–359

    Article  CAS  Google Scholar 

  21. Asif M, Aziz A, Azeem M, Wang ZY, Ashraf G, Xiao F, Chen XD, Liu HF (2018) A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination. Adv Colloid Interf Sci 262:21–38

    Article  CAS  Google Scholar 

  22. Asif M, Aziz A, Wang ZY, Ashraf G, Wang JL, Luo HB, Chen XD, Xiao F, Liu HF (2019) Hierarchical CNTs@CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells. Anal Chem 91:3912–3920

    Article  CAS  Google Scholar 

  23. Asif M, Aziz A, Ashraf G, Wang ZY, Wang JL, Azeem M, Chen XD, Xiao F, Liu HF (2018) Facet-inspired core–shell gold nanoislands on metal oxide octadecahedral heterostructures: high sensing performance toward sulfide in biotic fluids. ACS Appl Mater Interfaces 10:36675–36685

    Article  CAS  Google Scholar 

  24. Anu Prathap MU, Srivastava R (2011) Synthesis of nanoporous metal oxides through the self-assembly of phloroglucinol–formaldehyde resol and tri-block copolymer. J Colloid Interface Sci 358:399–408

    Article  CAS  Google Scholar 

  25. Permyakova AA, Han B, Jensen JO, Bjerrum NJ, Shao-Horn Y (2015) Pt—Si bifunctional surfaces for CO and methanol electro-oxidation. J Phys Chem C 119:8023–8031

    Article  CAS  Google Scholar 

  26. Zhou L, Wang JP, Li DJ, Li YB (2014) An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples. Food Chem 162:34–40

    Article  CAS  Google Scholar 

  27. Ji ZY, Zhu GX, Shen XP, Zhou H, Wu CM, Wang M (2012) Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation. New J Chem 36:1774

    Article  CAS  Google Scholar 

  28. Lee JW, Ahn T, Kim JH, Ko JM, Kim J-D (2011) Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim Acta 56:4849–4857

    Article  CAS  Google Scholar 

  29. Tian CH, Chen DD, Lu NL, Li Y, Cui RJ, Han ZD, Zhang GH (2018) Electrochemical bisphenol A sensor based on nanoporous PtFe alloy and graphene modified glassy carbon electrode. J Electroanal Chem 830-831:27–33

    Article  CAS  Google Scholar 

  30. Asif M, Wang HT, D S, Aziz A, Zhang GA, Xiao F, Liu HF (2017) Metal oxide intercalated layered double hydroxide nanosphere: with enhanced electrocatalyic activity towards H 2 O 2 for biological applications. Sensors Actuators B Chem 239:243–252

    Article  CAS  Google Scholar 

  31. Mazzotta E, Malitesta C, Margapoti E (2013) Direct electrochemical detection of bisphenol A at PEDOT-modified glassy carbon electrodes. Anal Bioanal Chem 405:3587–3592

    Article  CAS  Google Scholar 

  32. Portaccio M, Di Tuoro D, Arduini F, Moscone D, Cammarota M, Mita DG, Lepore M (2013) Laccase biosensor based on screen-printed electrode modified with thionine–carbon black nanocomposite, for Bisphenol A detection. Electrochim Acta 109:340–347

    Article  CAS  Google Scholar 

  33. Sun P, Wu YH (2013) An amperometric biosensor based on human cytochrome P450 2C9 in polyacrylamide hydrogel films for bisphenol A determination. Sensors Actuators B Chem 178:113–118

    Article  CAS  Google Scholar 

  34. Li YH, Wang HQ, Yan B, Zhang HY (2017) An electrochemical sensor for the determination of bisphenol A using glassy carbon electrode modified with reduced graphene oxide-silver/poly-l-lysine nanocomposites. J Electroanal Chem 805:39–46

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the support of Major Natural Science Foundation of Jiangsu Provincial Education Department (16KJA150007), National Natural Science Foundation of China (51371004), and Jiangsu Province Qing Lan Project (SZ2014005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongjing Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Shi, Y., Wang, J. et al. Nanocomposites consisting of nanoporous platinum-silicon and graphene for electrochemical determination of bisphenol A. Microchim Acta 187, 241 (2020). https://doi.org/10.1007/s00604-020-4219-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4219-6

Keywords

Navigation