Skip to main content
Log in

Detection of progesterone in aqueous samples by molecularly imprinted photonic polymers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A label-free molecular imprinted polymer (MIP) sensor was fabricated for the detection of progesterone in aqueous solutions, by polymerization inside the void spaces of colloidal crystals, which gave them photonic properties. The prepolymerization mixture was prepared from acrylic acid as the functional monomer, ethylene glycol as the cross-linker agent, ethanol as solvent, and progesterone as the imprinted template. After polymerization, the colloidal crystal was removed by acid etching and the target eluted with a solvent. Material characterization included as follows: attenuated total reflectance-Fourier-transform infrared spectroscopy, dynamic light scattering, swelling experiments, and environmental scanning electron microscopy. MIPs were investigated by equilibrium binding, kinetics experiments, and UV–visible spectra to investigate Bragg diffraction peak shift that occurs with the rebinding at different progesterone concentrations in deionized water and 150-mM NaCl solutions. The MIP response was investigated with progesterone concentration in the 1–100 μg L−1 range, with LOD of 0.5 μg L−1, reaching the detected range of hormone in natural waters. Furthermore, hydrogel MIP films were successfully tested in various real water matrices with satisfactory results. Moreover, the MIP film exhibited good selectivity toward the progesterone hormone evidenced by a larger response than when exposed to structurally similar molecules. Computational studies suggested that size along with surface potential influenced the binding of analog compounds. Due to their ease of use and low cost, the sensors are promising as screening tools for the presence of progesterone in aqueous samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ričanyová J, Gadzała-Kopciuch R, Reiffova K, Bazel Y, Buszewski B (2010) Molecularly imprinted adsorbents for preconcentration and isolation of progesterone and testosterone by solid phase extraction combined with HPLC. Adsorption 16(4):473–483. https://doi.org/10.1007/s10450-010-9265-7

    Article  CAS  Google Scholar 

  2. Fent K (2015) Progestins as endocrine disrupters in aquatic ecosystems: concentrations, effects and risk assessment. Environ Int 84:115–130. https://doi.org/10.1016/j.envint.2015.06.012

    Article  CAS  PubMed  Google Scholar 

  3. Golovko O, Šauer P, Fedorova G, Kroupová HK, Grabic R (2018) Determination of progestogens in surface and waste water using SPE extraction and LC-APCI/APPI-HRPS. Sci Total Environ 621:1066–1073. https://doi.org/10.1016/j.scitotenv.2017.10.120

    Article  CAS  PubMed  Google Scholar 

  4. Kumar V, Johnson AC, Trubiroha A, Tumová J, Ihara M, Grabic R, … Kroupová HK (2015) The challenge presented by progestins in ecotoxicological research: a critical review. Environ Sci Technol 49(5), 2625–2638https://doi.org/10.1021/es5051343

  5. Kasambala HR, Rwiza MJ, Mdegela RH (2019) Levels and distribution of progesterone in receiving waters and wastewaters of a growing urban area. Water Sci Technol 80(6):1107–1117. https://doi.org/10.2166/wst.2019.350

    Article  CAS  PubMed  Google Scholar 

  6. Huang X, Yuan D, Huang B (2008) Determination of steroid sex hormones in urine matrix by stir bar sorptive extraction based on monolithic material and liquid chromatography with diode array detection. Talanta 75(1):172–177. https://doi.org/10.1016/j.talanta.2007.10.052

    Article  CAS  PubMed  Google Scholar 

  7. Tomšíková H, Aufartová J, Solich P, Nováková L, Sosa-Ferrera Z, Santana-Rodríguez JJ (2012) High-sensitivity analysis of female-steroid hormones in environmental samples. TrAC, Trends Anal Chem 34:35–58. https://doi.org/10.1016/j.trac.2011.11.008

    Article  CAS  Google Scholar 

  8. Chang H, Wan Y, Wu S, Fan Z, Hu J (2011) Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters: comparison to estrogens. Water Res 45(2):732–740. https://doi.org/10.1016/j.watres.2010.08.046

    Article  CAS  PubMed  Google Scholar 

  9. Alvarez-Lorenzo C (2013) Handbook of molecularly imprinted polymers. Smithers Rapra

  10. Cáceres C, Bravo C, Rivas B, Moczko E, Sáez P, García Y, Pereira E (2018) Molecularly imprinted polymers for the selective extraction of bisphenol A and progesterone from aqueous media. Polymers, 10(6). https://doi.org/10.3390/polym10060679

  11. Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, … Chen L (2020) Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends Anal Chem 128, 115923https://doi.org/10.1016/j.trac.2020.115923

  12. Arabi M, Ostovan A, Bagheri AR, Guo X, Li J, Ma J, Chen L (2020) Hydrophilic molecularly imprinted nanospheres for the extraction of rhodamine B followed by HPLC analysis: a green approach and hazardous waste elimination. Talanta 215:120933. https://doi.org/10.1016/j.talanta.2020.120933

    Article  CAS  PubMed  Google Scholar 

  13. Gholami H, Ghaedi M, Ostovan A, Arabi M, Bagheri AR (2019) Preparation of hollow porous molecularly imprinted and aluminum(III) doped silica nanospheres for extraction of the drugs valsartan and losartan prior to their quantitation by HPLC. Mikrochim Acta 186(11):702. https://doi.org/10.1007/s00604-019-3794-x

    Article  CAS  PubMed  Google Scholar 

  14. Casis N, Busatto C, Fidalgo de Cortalezzi MM, Ravaine S, Estenoz DA (2015) Molecularly imprinted hydrogels from colloidal crystals for the detection of progesterone. Polym Int 64(6):773–779. https://doi.org/10.1002/pi.4851

    Article  CAS  Google Scholar 

  15. Lin Z, Li L, Fu G, Lai Z, Peng A, Huang Z (2020) Molecularly imprinted polymer-based photonic crystal sensor array for the discrimination of sulfonamides. Anal Chim Acta 1101:32–40. https://doi.org/10.1016/j.aca.2019.12.032

    Article  CAS  PubMed  Google Scholar 

  16. Han S, Jin Y, Su L, Chu H, Zhang W (2020) A two-dimensional molecularly imprinted photonic crystal sensor for highly efficient tetracycline detection. Anal Methods 12(10):1374–1379. https://doi.org/10.1039/D0AY00110D

    Article  CAS  Google Scholar 

  17. Kadhem AJ, Xiang S, Nagel S, Lin C-H, Fidalgo de Cortalezzi M (2018) Photonic molecularly imprinted polymer film for the detection of testosterone in aqueous samples. Polymers 10(4):349. https://doi.org/10.3390/polym10040349

    Article  CAS  PubMed Central  Google Scholar 

  18. Dai J, Fidalgo de Cortalezzi M (2019) Influence of pH, ionic strength and natural organic matter concentration on a MIP-fluorescent sensor for the quantification of DNT in water. Heliyon 5(6):e01922. https://doi.org/10.1016/j.heliyon.2019.e01922

    Article  PubMed  PubMed Central  Google Scholar 

  19. Krishnakumar V, Balachandran V (2005) Analysis of vibrational spectra of 5-fluoro, 5-chloro and 5-bromo-cytosines based on density functional theory calculations. Spectrochim Acta Part A Mol Biomol Spectrosc 61(5):1001–1006. https://doi.org/10.1016/j.saa.2004.05.044

    Article  CAS  Google Scholar 

  20. Azofra LM, Alkorta I, Elguero J (2013) Theoretical study of the mutarotation of erythrose and threose: acid catalysis. Carbohyd Res 372:1–8. https://doi.org/10.1016/j.carres.2013.01.013

    Article  CAS  Google Scholar 

  21. Lin H, Wu D, Liu L, Jia D (2008) Theoretical study on molecular structures, intramolecular proton transfer reaction, and solvent effects of 1-phenyl-3-methyl-4-(6-hydro-4-amino-5-sulfo-2,3-pyrazine)-pyrazole-5-one. J Mol Struct (Thoechem) 850(1):32–37. https://doi.org/10.1016/j.theochem.2007.10.011

    Article  CAS  Google Scholar 

  22. Kolar P, Classen J, Hall SG (2019) Physicochemical data of p-cresol, butyric acid, and ammonia. Data Brief 26:104356. https://doi.org/10.1016/j.dib.2019.104356

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang J, Lu T (2021) Efficient evaluation of electrostatic potential with computerized optimized code. Phys Chem Chem Phys 23(36):20323–20328. https://doi.org/10.1039/D1CP02805G

    Article  CAS  PubMed  Google Scholar 

  24. Jiang P, Bertone JF, Hwang KS, Colvin VL (1999) Single-crystal colloidal multilayers of controlled thickness. Chem Mater 11(8):2132–2140. https://doi.org/10.1021/cm990080+

    Article  CAS  Google Scholar 

  25. Chen S, Sun H, Huang Z, Jin Z, Fang S, He J, … Lai J (2019) The visual detection of anesthetics in fish based on an inverse opal photonic crystal sensor. RSC Advances, 9(29), 16831–16838https://doi.org/10.1039/C9RA01600G

  26. Zhou C, Wang T, Liu J, Guo C, Peng Y, Bai J, … Gao Z (2012) Molecularly imprinted photonic polymer as an optical sensor to detect chloramphenicol. The Analyst, 137(19), 4469https://doi.org/10.1039/c2an35617a

  27. Kadhem AJ, Gentile GJ, Fidalgo de Cortalezzi MM (2021) Molecularly imprinted polymers (MIPs) in sensors for environmental and biomedical applications: a review. Molecules (Basel, Switzerland) 26(20):6233. https://doi.org/10.3390/molecules26206233

    Article  CAS  Google Scholar 

  28. Nawaz T, Ahmad M, Yu J, Wang S, Wei T (2020) The biomimetic detection of progesterone by novel bifunctional group monomer based molecularly imprinted polymers prepared in UV light. New J Chem 44(17):6992–7000. https://doi.org/10.1039/C9NJ06387K

    Article  CAS  Google Scholar 

  29. Nezhadali A, Es’haghi Z, Khatibi A (2016) Selective extraction of progesterone hormones from environmental and biological samples using a polypyrrole molecularly imprinted polymer and determination by gas chromatography. Analytical Methods 8(8):1813–1827. https://doi.org/10.1039/C5AY02174J11.11.008

    Article  CAS  Google Scholar 

  30. Chen W, Meng Z, Xue M, Shea K (2016) Molecular imprinted photonic crystal for sensing of biomolecules. Molecular Imprinting 4:1–12. https://doi.org/10.1515/molim-2016-0001

    Article  CAS  Google Scholar 

  31. Kibechu RW, Mamo MA, Msagati TAM, Sampath S, Mamba BB (2014) Synthesis and application of reduced graphene oxide and molecularly imprinted polymers composite in chemo sensor for trichloroacetic acid detection in aqueous solution. Physics and Chemistry of the Earth, Parts A/B/C 76–78:49–53. https://doi.org/10.1016/j.pce.2014.09.008

    Article  Google Scholar 

  32. Huang J, Hu X, Zhang W, Zhang Y, Li G (2008) pH and ionic strength responsive photonic polymers fabricated by using colloidal crystal templating. Colloid Polym Sci 286(1):113–118. https://doi.org/10.1007/s00396-007-1775-9

    Article  CAS  Google Scholar 

  33. Kempe H, Kempe M (2010) Influence of salt ions on binding to molecularly imprinted polymers. Anal Bioanal Chem 396(4):1599–1606. https://doi.org/10.1007/s00216-009-3329-0

    Article  CAS  PubMed  Google Scholar 

  34. Boufas W, Dupont N, Berredjem M, Berrezag K, Becheker I, Berredjem H, Aouf N-E (2014) Synthesis and antibacterial activity of sulfonamides. SAR and DFT studies. J Mol Struct 1074:180–185. https://doi.org/10.1016/j.molstruc.2014.05.066

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fidalgo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2176 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasim, S., Hsu, SY., Rossi, E. et al. Detection of progesterone in aqueous samples by molecularly imprinted photonic polymers. Microchim Acta 189, 174 (2022). https://doi.org/10.1007/s00604-022-05290-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05290-w

Keywords

Navigation